Machine Learning: Predict Poisonous Mushrooms using a Random Forest Model and the FFTrees Package in R

4.6
estrelas
88 classificações
oferecido por
Coursera Project Network
4,363 já se inscreveram
Neste projeto guiado, você irá:

Complete a random Training and Test Set from one Data Source using an R function.

Practice data exploration using R and ggplot2.

Apply a Random Forest model using the FFTrees package in R.

Clock2 Hours
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this 1-hour long project-based course, you will learn how to complete a training and test set using an R function, practice looking at data distribution using R and ggplot2, Apply a Random Forest model to the data using the FFTrees package in R, and examine the results using a Confusion Matrix. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

R ProgrammingRandom Forest Model

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Task 1: In this task the Learner will be introduced to the Course Objectives, which is to how to execute a Random Forest Model using R and the FFTrees package developed by Nathaniel Phillips. There will be a short discussion about the Interface and an Instructor Bio.

  2. Task 2: The Learners will get practice doing Exploratory Analysis using ggplot2. This is important in order for the practitioner to see the balance of the data, especially as it relates to the Response Variable.

  3. Task 3: The Learner will get experience creating Testing and Training Data Sets. There are multiple ways to do this in R. The Instructor will show the Learner how to do it using the Base R way and also using a function from the caret package.

  4. Task 4: The Learner will get experience with the syntax of FFTrees package and then will execute the Random Forest Model.

  5. Task 5: The Learner will get practice with building a Confusion Matrix to evaluate model performance.

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Instrutores

Avaliações

Principais avaliações do MACHINE LEARNING: PREDICT POISONOUS MUSHROOMS USING A RANDOM FOREST MODEL AND THE FFTREES PACKAGE IN R

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.