Real-time OCR and Text Detection with Tensorflow, OpenCV and Tesseract

3.7
estrelas
132 classificações
oferecido por
Coursera Project Network
6.749 já se inscreveram
Neste Projeto Guiado gratuito, você irá:

Train Tensorflow to recognize a Region of Interest (ROI) in an image or frame of a video.

Extract and enhance relevant image segments with OpenCV .

Use Tesseract to extract, export text data for use in real-time.

Mostre essa experiência prática em uma entrevista

Clock2 hours
AdvancedAvançado
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this 1-hour long project-based course, you will learn how to collect and label images and use them to train a Tensorflow CNN (convolutional neural network) model to recognize relevant areas of (typeface) text in any image, video frame or frame from webcam video. You will learn how to extract image segments that your detector has identified as containing text and enhance them using various image filters from the OpenCV module. Then you will learn how to pass the result image to Google's open-source OCR (Optical Character Recognition) software using the pytesseract python library and read the text to whatever form of output you like. All of this will be done on Windows, but can be accomplished with very little alteration on Linux as well. We will be using the IDLE development environment to write a single script to scan our video, webcam input, or array of images for text and read that text into our output. Tensorflow, the Tensorflow Object Detection API, Tesseract, the pytesseract library, labelImg for image annotation, OpenCV, and all other required software has already been installed for you in your Rhyme desktop. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Requisitos

Strong experience in Python. Familiarity with the command line (Windows).

Habilidades que você desenvolverá

TensorflowDeep Learning in PythonObject DetectionOptical Character RecognitionComputer Vision

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Introduction to the Course

  2. Setting up our script

  3. Collect and Label Images for ROI Recognition

  4. Summary of Tensorflow Model Training -

  5. Capturing Input in the form of Webcam, Images or Video File

  6. Extract and Enhance ROI with OpenCV

  7. Use Tesseract to extract, export and use text data

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.