Named Entity Recognition using LSTMs with Keras

4.4
estrelas
131 classificações
oferecido por
Coursera Project Network
3,804 já se inscreveram
Neste projeto guiado, você irá:

Build and train a bi-directional LSTM with Keras

Solve the Named Entity Recognition (NER) problem with LSTMs

Clock1.5 hours
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this 1-hour long project-based course, you will use the Keras API with TensorFlow as its backend to build and train a bidirectional LSTM neural network model to recognize named entities in text data. Named entity recognition models can be used to identify mentions of people, locations, organizations, etc. Named entity recognition is not only a standalone tool for information extraction, but it also an invaluable preprocessing step for many downstream natural language processing applications like machine translation, question answering, and text summarization. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

Deep LearningMachine LearningTensorflowLong Short-Term Memory (ISTM)keras

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Project Overview and Import Modules

  2. Load and Explore the NER Dataset

  3. Retrieve Sentences and Corresponding Tags

  4. Define Mappings between Sentences and Tags

  5. Padding Input Sentences and Creating Train/Test Splits

  6. Build and Compile a Bidirectional LSTM Model

  7. Train the Model

  8. Evaluate Named Entity Recognition Model

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Instrutores

Avaliações

Principais avaliações do NAMED ENTITY RECOGNITION USING LSTMS WITH KERAS

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.