Music Recommender System Using Pyspark

4.5
estrelas
14 classificações
oferecido por
Coursera Project Network
Neste projeto guiado, você irá:

Learn how to setup the google colab for distributed data processing

Learn how aggregate a pyspark dataframe to have the data needed for our machine learning model

Learn how to use StringIndexer to convert a String (categorical) column into Unique Integral column

Learn how to create ALS model for Recommender System

Clock1 hour
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

Nowadays, recommender systems are everywhere. for example, Amazon uses recommender systems to suggest some products that you might be interested in based on the products you've bought earlier. Or Spotify will suggest new tracks based on the songs you use to listen to every day. Most of these recommender systems use some algorithms which are based on Matrix factorization such as NMF( NON NEGATIVE MATRIX FACTORIZATION) or ALS (Alternating Least Square). So in this Project, we are going to use ALS Algorithm to create a Music Recommender system to suggest new tracks to different users based upon the songs they've been listening to. As a very important prerequisite of this course, I suggest you study a little bit about ALS Algorithm because in this course we will not cover any theoretical concepts. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

  • Programming Model
  • Algorithms
  • Algorithm Training
  • PySpark

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Prepare the Google Colab for distributed data processing

  2. Mounting our Google Drive into Google Colab environment

  3. Importing csv file of our Dataset (4 Gb) into pySpark dataframe

  4. Dropping some useless columns and nan Values in our dataframe

  5. Performing an Aggregation to prepare the data

  6. Learn how to use StringIndexer to convert a String (categorical) column into Unique Integral column

  7. Creating ALS model for Recommender System

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Avaliações

Principais avaliações do MUSIC RECOMMENDER SYSTEM USING PYSPARK

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao estudante.