Evaluate Machine Learning Models with Yellowbrick

4.8
estrelas

50 classificações

oferecido por

2.962 já se inscreveram

Neste projeto guiado, você irá:
2 hours
Intermediário
Sem necessidade de download
Vídeo em tela dividida
Inglês
Apenas em desktop

Welcome to this project-based course on Evaluating Machine Learning Models with Yellowbrick. In this course, we are going to use visualizations to steer our machine learning workflow. The problem we will tackle is to predict whether rooms in apartments are occupied or unoccupied based on passive sensor data such as temperature, humidity, light and CO2 levels. We will build a logistic regression model for binary classification. This is a continuation of the course on Room Occupancy Detection. With an emphasis on visual steering of our analysis, we will cover the following topics in our machine learning workflow: model evaluation with ROC/AUC plots, confusion matrices, cross-validation scores, and setting discrimination thresholds for logistic regression models. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, Yellowbrick, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

  • Data Science

  • Machine Learning

  • Python Programming

  • Data Visualization (DataViz)

  • Scikit-Learn

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Avaliações

Principais avaliações do EVALUATE MACHINE LEARNING MODELS WITH YELLOWBRICK

Visualizar todas as avaliações

Perguntas Frequentes – FAQ