Machine Learning Interpretable: SHAP, PDP y permutacion

oferecido por
Coursera Project Network
Neste projeto guiado, você irá:

Conocer los fundamentos de la interpretabilidad de modelos

Aplicar librerías para la interpretabilidad de modelos como: SHAP, Partial Dependence Plot y Permutation importance

Desarrollar modelos interpretables de Random Forest, LightGBM, etc

Clock2 horas
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsEspanhol
LaptopApenas em desktop

Este proyecto es un curso práctico y efectivo para aprender a generar modelos de Machine Learning interpretables. Se explican en profundidad diferentes técnicas de interpretabilidad de modelos como: SHAP, Partial Dependence Plot, Permutation importance, etc que nos permitirá entender el porqué de las predicciones. Gracias a esto, aprenderás a entrenar modelos Glassbox que puedas entender el porqué de sus decisiones.

Habilidades que você desenvolverá

  • Python Programming
  • SHAP
  • Machine Learning Interpretability
  • MAchine Learning interpretable

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Introducción a la interpretabilidad de modelos en Machine Learning

  2. Desarrollo del modelo de Machine Learning

  3. Importancia de las variables: Permutation Importance

  4. Efecto de las variables: Partial Dependence Plots

  5. Entendiendo las predicciones individuales: SHAP

  6. SHAP con LightGBM

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao estudante.