Logistic Regression with NumPy and Python

4.4
estrelas
68 classificações
10 avaliações
oferecido por
Rime
Neste Guided Project, você irá:

Implement the gradient descent algorithm from scratch

Perform logistic regression with NumPy and Python

Create data visualizations with Matplotlib and Seaborn

Clock1.5 hours
BeginnerBásico
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

Welcome to this project-based course on Logistic with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery, including gradient descent, cost function, and logistic regression, of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. By the time you complete this project, you will be able to build a logistic regression model using Python and NumPy, conduct basic exploratory data analysis, and implement gradient descent from scratch. The prerequisites for this project are prior programming experience in Python and a basic understanding of machine learning theory. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, NumPy, and Seaborn pre-installed.

Habilidades que você desenvolverá

Data ScienceMachine LearningPython ProgrammingclassificationNumpy

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Introduction and Project Overview

  2. Load the Data and Import Libraries

  3. Visualize the Data

  4. Define the Logistic Sigmoid Function 𝜎(𝑧)

  5. Compute the Cost Function 𝐽(𝜃) and Gradient

  6. Cost and Gradient at Initialization

  7. Implement Gradient Descent

  8. Plotting the Convergence of 𝐽(𝜃)

  9. Plotting the Decision Boundary

  10. Predictions Using the Optimized 𝜃 Values

How Guided Projects work

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Instrutores

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

  • By purchasing a Guided Project, you'll get everything you need to complete the Guided Project including access to a cloud desktop workspace through your web browser that contains the files and software you need to get started, plus step-by-step video instruction from a subject matter expert.

  • Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.

  • Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.

  • You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.

  • Guided Projects are not eligible for refunds. Consulte nossa política de reembolso completa.

  • Financial aid is not available for Guided Projects.

  • Auditing is not available for Guided Projects.

  • At the top of the page, you can press on the experience level for this Guided Project to view any knowledge prerequisites. For every level of Guided Project, your instructor will walk you through step-by-step.

  • Yes, everything you need to complete your Guided Project will be available in a cloud desktop that is available in your browser.

  • Você aprenderá na prática ao completar tarefas em um ambiente com tela dividida, diretamente em seu navegador. No lado esquerdo da tela, você completa a tarefa no seu espaço de trabalho. No lado direito, você assiste a um instrutor que o guiará pelo projeto, passo a passo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.