Imbalanced-learn: modelos de ML con datos desequilibrados

oferecido por
Coursera Project Network
Neste projeto guiado, você irá:

Aprender que son los datos desbalanceados

Aplicar técnicas de under-sampling y over-sampling

Conocer las técnicas para tratar con datos desbalanceados

Clock2 horas
BeginnerBásico
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsEspanhol
LaptopApenas em desktop

Este proyecto es un curso práctico y efectivo para aprender que es el desbalanceo de clases en Machine leraning y como tratarlo. Aprenderemos las técnicas más avanzadas para trabajar con datos desbalanceados como: bSMOTE, ADASYN, SMOTEEN, etc. También aprenderemos a generar modelos capaces de trabajar con datos desbalanceados. Una gran parte de los problemas de clasificación utilizan datos debalanceadas. Si no se tratan estos casos estaremos generando modelos que no estén funcionando correctamente, pese a que a priori parezca que si. Por eso, en este curso aprenderemos a como tratar este tipo de datos.

Habilidades que você desenvolverá

  • ADASYN
  • SMOTE
  • Machine Learning
  • Python Programming
  • Imbalanced-learn

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Introducción al desbalanceo de clases

  2. Aplicando técnicas para trabajar con datos desbalanceados

  3. Balanceo aleatorio

  4. Under-sampling

  5. Over-sampling

  6. Over-sampling seguido de under-sampling

  7. Modelos para datos desbalanceados

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao estudante.