Effectively Dealing with Imbalance Classes

oferecido por
Coursera Project Network
Neste projeto guiado, você irá:

Import dataset and perform EDA & visualizations

Become familiar with the variety of under sampling techniques, their advantages & dis-advantages and implement them.

Clock2 Hours
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this 2 hour guided project you will learn how to deal with imbalance classification problems in a profound manner, applying several resampling strategies and visualizing the effects of resampling on imbalance classification dataset. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

  • ADASYN
  • SMOTETomek
  • SMOTE
  • Machine Learning
  • Data Visualization (DataViz)

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Task 1: Importing data, Exploratory data analysis & visualizations

  2. Task 2: Applying under sampling strategies: Random & TomekLinks

  3. Task 3: Applying over sampling strategies: SMOTE & SVMSMOTE

  4. Task 4: Combining Over & Under Sampling strategies: SMOTETomek

  5. Task 5: Metrics Discussion & Comparison of impact of all the strategies

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao estudante.