Image Noise Reduction with Auto-encoders using TensorFlow

4.7
estrelas

109 classificações

oferecido por

4.721 já se inscreveram

Neste projeto guiado, você irá:
2 hours
Intermediário
Sem necessidade de download
Vídeo em tela dividida
Inglês
Apenas em desktop

In this 2-hour long project-based course, you will learn the basics of image noise reduction with auto-encoders. Auto-encoding is an algorithm to help reduce dimensionality of data with the help of neural networks. It can be used for lossy data compression where the compression is dependent on the given data. This algorithm to reduce dimensionality of data as learned from the data can also be used for reducing noise in data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Tensorflow pre-installed. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

  • Data Science

  • Deep Learning

  • Noise Reduction

  • Machine Learning

  • Autoencoder

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Instrutores

Avaliações

Principais avaliações do IMAGE NOISE REDUCTION WITH AUTO-ENCODERS USING TENSORFLOW

Visualizar todas as avaliações

Perguntas Frequentes – FAQ