Emotion AI: Facial Key-points Detection

4.6
estrelas
81 classificações
oferecido por
Coursera Project Network
3,414 já se inscreveram
Neste projeto guiado, você irá:

Understand the theory and intuition behind Deep Neural Networks, and Residual Neural Networks, and Convolutional Neural Networks (CNNs).

Build and train a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend.

Assess the performance of trained CNN and ensure its generalization using various Key performance indicators.

Clock3 hours/week
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this 1-hour long project-based course, you will be able to: - Understand the theory and intuition behind Deep Learning, Convolutional Neural Networks (CNNs) and Residual Neural Networks. - Import Key libraries, dataset and visualize images. - Perform data augmentation to increase the size of the dataset and improve model generalization capability. - Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend. - Compile and fit Deep Learning model to training data. - Assess the performance of trained CNN and ensure its generalization using various KPIs. - Improve network performance using regularization techniques such as dropout.

Habilidades que você desenvolverá

Deep LearningMachine LearningPython ProgrammingArtificial Intelligence(AI)Computer Vision

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Task 1: Project Overview/Understand the problem statement and business case

  2. Task 2: Import Libraries/datasets and perform preliminary data processing

  3. Task 3: Perform Image Visualization

  4. Task 4: Perform Image Augmentation

  5. Task 5: Prepare the data for deep learning model training (Normalization/reshaping)

  6. Task 6: Understand the theory and intuition behind Deep Neural Networks and CNNs.

  7. Task 7: Build Deep Residual Neural Network Model

  8. Task 8: Compile and train deep learning model

  9. Task 9: Assess the Performance of the Trained Model

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Avaliações

Principais avaliações do EMOTION AI: FACIAL KEY-POINTS DETECTION

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

  • Ao comprar projetos guiados, você recebe tudo o que precisa para completá-los, inclusive acesso a um espaço de trabalho de área de trabalho na nuvem por meio do seu navegador web, que contém o software e os arquivos necessários para iniciar, além de um vídeo de instruções passo a passo de um especialista no assunto.

  • Como seu espaço de trabalho tem uma área de trabalho na nuvem dimensionada para notebooks e computadores desktop, os projetos guiados não estão disponíveis para dispositivos móveis.

  • Os instrutores do projeto guiado são especialistas no assunto, têm experiência com a habilidade, a ferramenta ou o domínio do projeto e amam compartilhar seus conhecimentos para ajudar milhões de aprendizes do mundo todo.

  • Você pode baixar e manter todos os arquivos que foram criados para seu projeto guiado. Para fazer isso, você pode usar o recurso "Navegador de arquivos" enquanto acessa a área de trabalho na nuvem.

  • Reembolsos não estão disponíveis para projetos guiados. Consulte nossa política de reembolso completa.

  • Não há auxílio financeiro disponível para projetos guiados.

  • A participação como ouvinte não está disponível para projetos guiados.

  • Na parte superior da página, você pode clicar no nível de experiência deste projeto guiado para visualizar os pré-requisitos de conhecimento. Em cada nível dos projetos guiados, seu instrutor o guiará passo a passo.

  • Você aprenderá na prática ao completar tarefas em um ambiente com tela dividida, diretamente em seu navegador. No lado esquerdo da tela, você completa a tarefa no seu espaço de trabalho. No lado direito, você assiste a um instrutor que o guiará pelo projeto, passo a passo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.