Chevron Left
Voltar para Deep Learning with PyTorch : Neural Style Transfer

Comentários e feedback de alunos de Deep Learning with PyTorch : Neural Style Transfer da instituição Coursera Project Network

4.3
estrelas
86 classificações

Sobre o curso

In this 2 hour-long project-based course, you will learn to implement neural style transfer using PyTorch. Neural Style Transfer is an optimization technique used to take a content and a style image and blend them together so the output image looks like the content image but painted in the style of the style image. We will create artistic style image using content and given style image. We will compute the content and style loss function. We will minimize this loss function using optimization techniques to get an artistic style image that retains content features and style features. This guided project is for learners who want to apply neural style transfer practically using PyTorch. In order to be successful in this guided project, you should be familiar with the theoretical concept of neural style transfer, python programming, and convolutional neural networks.A google account is needed to use the Google colab environment....

Melhores avaliações

IP

6 de jan de 2022

great guided project , learn NST, pytorch, vgg architecture before starting and there are some exceptions in the code feel free to search in stackoverflow.

VM

16 de dez de 2020

The understanding in this course is amazing and very satisfying. I will recommended to my friends to take this one.

Filtrar por:

1 — 17 de 17 Avaliações para o Deep Learning with PyTorch : Neural Style Transfer

por Jose L M M

13 de jun de 2021

por Immadi S P

7 de jan de 2022

por Vatsal K M

17 de dez de 2020

por JODHANI Z

22 de fev de 2021

por Kartik D

16 de jan de 2021

por 19020587 P H N

18 de dez de 2021

por Sania Z

27 de set de 2021

por Gabriel F

14 de set de 2021

por Huyy N

12 de jul de 2021

por Kenneth N

28 de jul de 2022

por Tarun K

18 de nov de 2021

por Yutaro O

14 de mai de 2021

por Monish

5 de ago de 2021

por Jung S

17 de set de 2021

por Frank W

2 de nov de 2021

por Christos G

6 de dez de 2020

por Vitor G

4 de out de 2022