Deep Learning with PyTorch : Generative Adversarial Network

oferecido por
Coursera Project Network
Neste projeto guiado, você irá:

Create Discriminator and Generator Network

Create a training loop to train GAN model

Clock2 hours
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this two hour project-based course, you will implement Deep Convolutional Generative Adversarial Network using PyTorch to generate handwritten digits. You will create a generator that will learn to generate images that look real and a discriminator that will learn to tell real images apart from fakes. This hands-on-project will provide you the detail information on how to implement such network and train to generate handwritten digit images. In order to be successful in this project, you will need to have a theoretical understanding on convolutional neural network and optimization algorithm like Adam or gradient descent. This project will focus more on the practical aspect of DCGAN and less on theoretical aspect. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

  • Convolutional Neural Network
  • Python Programming
  • pytorch
  • Genrative Adversarial Network

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Setup Google Runtime

  2. Configurations

  3. Load MNIST Handwritten Dataset

  4. Load Dataset into Batches

  5. Create Discriminator Network

  6. Create Generator Network

  7. Create Loss Function and Load Optimizers

  8. Training GAN

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao estudante.