Deep Learning with PyTorch : Generative Adversarial Network
24 classificações

2.172 já se inscreveram
Create Discriminator and Generator Network
Create a training loop to train GAN model
Mostre essa experiência prática em uma entrevista
2.172 já se inscreveram
Create Discriminator and Generator Network
Create a training loop to train GAN model
Mostre essa experiência prática em uma entrevista
In this two hour project-based course, you will implement Deep Convolutional Generative Adversarial Network using PyTorch to generate handwritten digits. You will create a generator that will learn to generate images that look real and a discriminator that will learn to tell real images apart from fakes. This hands-on-project will provide you the detail information on how to implement such network and train to generate handwritten digit images. In order to be successful in this project, you will need to have a theoretical understanding on convolutional neural network and optimization algorithm like Adam or gradient descent. This project will focus more on the practical aspect of DCGAN and less on theoretical aspect. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Prior programming experience in Python and basic pytorch. Theoretical knowledge of Convolutional Neural Network and Training process (Optimization)
Convolutional Neural Network
Python Programming
pytorch
Genrative Adversarial Network
Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:
Setup Google Runtime
Configurations
Load MNIST Handwritten Dataset
Load Dataset into Batches
Create Discriminator Network
Create Generator Network
Create Loss Function and Load Optimizers
Training GAN
Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download
Em um vídeo de tela dividida, seu instrutor te orientará passo a passo
Como seu espaço de trabalho tem uma área de trabalho na nuvem dimensionada para notebooks e computadores desktop, os projetos guiados não estão disponíveis para dispositivos móveis.
Os instrutores do projeto guiado são especialistas no assunto, têm experiência com a habilidade, a ferramenta ou o domínio do projeto e amam compartilhar seus conhecimentos para ajudar milhões de aprendizes do mundo todo.
Você pode baixar e manter todos os arquivos que foram criados para seu projeto guiado. Para fazer isso, você pode usar o recurso "Navegador de arquivos" enquanto acessa a área de trabalho na nuvem.
Na parte superior da página, você pode clicar no nível de experiência deste projeto guiado para visualizar os pré-requisitos de conhecimento. Em cada nível dos projetos guiados, seu instrutor o guiará passo a passo.
Sim, tudo o que você precisa para completar o projeto guiado estará disponível em uma área de trabalho na nuvem disponível no seu navegador.
Você aprenderá na prática ao completar tarefas em um ambiente com tela dividida, diretamente em seu navegador. No lado esquerdo da tela, você completa a tarefa no seu espaço de trabalho. No lado direito, você assiste a um instrutor que o guiará pelo projeto, passo a passo.
Mais dúvidas? Visite o Central de Ajuda ao estudante.