Logistic Regression with Python and Numpy

4.5
estrelas
137 classificações
oferecido por
Coursera Project Network
5.484 já se inscreveram
Neste Projeto Guiado, você irá:

Implement Logistic Regression using Python and Numpy.

Apply Logistic Regression to solve binary classification problems.

Clock2 hours
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

Welcome to this project-based course on Logistic with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery, including gradient descent, cost function, and logistic regression, of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. By the time you complete this project, you will be able to build a logistic regression model using Python and NumPy, conduct basic exploratory data analysis, and implement gradient descent from scratch. The prerequisites for this project are prior programming experience in Python and a basic understanding of machine learning theory. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, NumPy, and Seaborn pre-installed.

Habilidades que você desenvolverá

Deep LearningMachine LearningLogistic RegressionPython ProgrammingNumpy

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Introduction

  2. Hyperparameters

  3. Dataset

  4. A Mini Batch of Examples

  5. Create Model

  6. Forward Pass

  7. Backward Pass

  8. Update Parameters

  9. Check Model Performance

  10. Training Loop

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Instrutores

Avaliações

Principais avaliações do LOGISTIC REGRESSION WITH PYTHON AND NUMPY

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.