Chevron Left
Voltar para Image Data Augmentation with Keras

Comentários e feedback de alunos de Image Data Augmentation with Keras da instituição Coursera Project Network

4.6
estrelas
444 classificações
70 avaliações

Sobre o curso

In this 1.5-hour long project-based course, you will learn how to apply image data augmentation in Keras. We are going to focus on using the ImageDataGenerator class from Keras’ image preprocessing package, and will take a look at a variety of options available in this class for data augmentation and data normalization. Since this is a practical, project-based course, you will need to prior experience with Python programming, convolutional neural networks, and Keras with a TensorFlow backend. Data augmentation is a technique used to create more examples, artificially, from an existing dataset. This is useful if your dataset is small and you want to increase the number of examples. Data augmentation can often solve over-fitting so that your model generalizes well after training. For images, a variety of augmentation can be applied to increase the number of examples. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Melhores avaliações

AQ

22 de nov de 2021

The instructor, Amit Yadav, is very clear in his instruction and provide great explanation on his model building, and compiling. Definitely a great course to get some deep learning skills.

SJ

17 de abr de 2020

Perfect course for beginners, requires very little base to start. Highly recommend it, certainly worth the time. Do look into convolutional neural network briefly before you start.

Filtrar por:

51 — 70 de 70 Avaliações para o Image Data Augmentation with Keras

por Sambit M

18 de jan de 2021

Good content. Cloud desktop (Rhyme) doesn't provide enough time. I don't like rushing.

por Dhruv Y

20 de jun de 2020

Mostly it covered well whatever was mentioned but there can some improvements

por Ujjwal K

7 de mai de 2020

Needs better explanation of the parameters and functions used in the program

por Varun S (

3 de jun de 2020

Please improve the content videos and Workplace interface.

por Gorusetty V N

17 de mai de 2020

I felt the hands-on Interface screen was pretty much slow.

por Shivam G

21 de ago de 2020

It's brief explanation for technical students

Good.

por muzna r

6 de ago de 2020

Very helpful and informative. Thank you!!!

por KUMBHAR P J

16 de abr de 2020

Good course for beginners :)

por bhwana m

25 de jun de 2020

i have learnt something new

por Jay K

17 de jun de 2020

good learning

por VVK. D

12 de jul de 2020

Nice

por Aman K

25 de jun de 2020

Good

por Akshay S

17 de jun de 2020

good

por Mallikarjuna R Y

5 de mai de 2020

good

por Jorge G

25 de fev de 2021

No recomiendo tomar este tipo de cursos, tome uno y lo aprobe, sin embargo despues de unos días he intentado repasar el material, y mi sorpresa es que me solicita volver a pagar para poder repasar el material. Por supuesto coursera me hace un pequeño descuento por ya haberlo pagado anteriormente.

Es muy facil descargar los videos y complicado hacerse del material, pero con ingenio es posible. Despues recomiendo subirlos a youtube y tenerlos privados para cuando deseen consultar (evitan problemas legales y pueden compartir con amigos), despues pueden solicitar el reembolso

por Muhammad Z U R

18 de set de 2020

it was really basic. need to improve the content. plus rhyme s often problematic hope you guys are looking forward to make it better. Overall i appreciate coursera for giving us opportunities to learn while we are at home. i wish that coursera extend its deadline for free courses.

por Aditya C

6 de jul de 2020

The virtual environment is too slow. Should have been on Coursera platform. Otherwise it deserves 5*

por SHAHRIAR H

27 de mai de 2020

The dashboard for writing the codes seemed a bit slow at times but overall good project.

por Shubham L

15 de jun de 2020

Some topics need more explanation

por CHAND N

5 de jun de 2020

Good