Cleaning and Exploring Big Data using PySpark

4.3
estrelas
20 classificações
oferecido por
Coursera Project Network
1,921 já se inscreveram
Neste projeto guiado, você irá:

Learn how to clean your big dataset in PySpark

Learn how to explore big dataset in PySpark

Learn how to create visualizations from big dataset loaded in PySpark

Clock2 hours
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

By the end of this project, you will learn how to clean, explore and visualize big data using PySpark. You will be using an open source dataset containing information on all the water wells in Tanzania. I will teach you various ways to clean and explore your big data in PySpark such as changing column’s data type, renaming categories with low frequency in character columns and imputing missing values in numerical columns. I will also teach you ways to visualize your data by intelligently converting Spark dataframe to Pandas dataframe. Cleaning and exploring big data in PySpark is quite different from Python due to the distributed nature of Spark dataframes. This guided project will dive deep into various ways to clean and explore your data loaded in PySpark. Data preprocessing in big data analysis is a crucial step and one should learn about it before building any big data machine learning model. Note: You should have a Gmail account which you will use to sign into Google Colab. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

CleaningPython ProgrammingData Visualization (DataViz)Apache SparkExploratory Data Analysis

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Install Spark on Google Colab and load datasets in PySpark

  2. Change column datatype, remove whitespaces and drop duplicates

  3. Remove columns with Null values higher than a threshold

  4. Group, aggregate and create pivot tables

  5. Rename categories and impute missing numeric values

  6. Create visualizations to gather insights

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Avaliações

Principais avaliações do CLEANING AND EXPLORING BIG DATA USING PYSPARK

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.