Big-O Time Complexity in Python Code

4.6
estrelas

26 classificações

oferecido por

1.533 já se inscreveram

Neste projeto guiado, você irá:
1 hour
Intermediário
Sem necessidade de download
Vídeo em tela dividida
Inglês
Apenas em desktop

In the field of data science, the volumes of data can be enormous, hence the term Big Data. It is essential that algorithms operating on these data sets operate as efficiently as possible. One measure used is called Big-O time complexity. It is often expressed not in terms of clock time, but rather in terms of the size of the data it is operating on. For example, in terms of an array of size N, an algorithm may take N^2 operations to complete. Knowing how to calculate Big-O gives the developer another tool to make software as good as it can be and provides a means to communicate performance when reviewing code with others. In this course, you will analyze several algorithms to determine Big-O performance. You will learn how to visualize the performance using the graphing module pyplot. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

  • Data Science

  • pyplot

  • Python Programming

  • Big-O

  • algorithm analysis

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Avaliações

Principais avaliações do BIG-O TIME COMPLEXITY IN PYTHON CODE

Visualizar todas as avaliações

Perguntas Frequentes – FAQ