Basic Statistics in Python (Correlations and T-tests)

4.4
estrelas

22 classificações

oferecido por
Neste projeto guiado, você irá:

Clean data, including removing missing data and unnecessary columns

Explore data using descriptive statistics

Create visualizations of our data and analysis

Perform statistical tests, including t-tests and correlation

1 hour 10 mins
Básico
Sem necessidade de download
Vídeo em tela dividida
Inglês
Apenas em desktop

By the end of this project, you will learn how to use Python for basic statistics (including t-tests and correlations). We will learn all the important steps of analysis, including loading, sorting and cleaning data. In this course, we will use exploratory data analysis to understand our data and plot boxplots to visualize the data. Boxplots also allow us to investigate any outliers in our datasets. We will then learn how to examine relationships between the different data using correlations and scatter plots. Finally, we will compare data using t-tests. Throughout this course we will analyse a dataset on Science and Technology from World Bank. The measures in this dataset are numeric, therefore you will learn how to handle and compare numeric data. This guided project is for anyone with an interest in performing statistical analysis using Python. This could be someone from a social science background with statistics knowledge who wants to advance their analysis, or anyone interested in analysing data.

Habilidades que você desenvolverá

  • Statistical Analysis

  • Data Cleansing

  • Summary Statistics

  • Pandas

  • Data Visualization (DataViz)

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Set up a new Google Colab notebook

  2. Load data into notebook

  3. Clean data to remove missing data and unnecessary columns

  4. Perform exploratory data analysis

  5. Create boxplots using for loops

  6. Explore relationships between data using correlation and scatter plots

  7. Perform t-tests to compare data from different years

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Avaliações

Principais avaliações do BASIC STATISTICS IN PYTHON (CORRELATIONS AND T-TESTS)

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Ao comprar projetos guiados, você recebe tudo o que precisa para completá-los, inclusive acesso a um espaço de trabalho de área de trabalho na nuvem por meio do seu navegador web, que contém o software e os arquivos necessários para iniciar, além de um vídeo de instruções passo a passo de um especialista no assunto.

Como seu espaço de trabalho tem uma área de trabalho na nuvem dimensionada para notebooks e computadores desktop, os projetos guiados não estão disponíveis para dispositivos móveis.

Os instrutores do projeto guiado são especialistas no assunto, têm experiência com a habilidade, a ferramenta ou o domínio do projeto e amam compartilhar seus conhecimentos para ajudar milhões de aprendizes do mundo todo.

Você pode baixar e manter todos os arquivos que foram criados para seu projeto guiado. Para fazer isso, você pode usar o recurso "Navegador de arquivos" enquanto acessa a área de trabalho na nuvem.

Reembolsos não estão disponíveis para projetos guiados. Consulte nossa política de reembolso completa.

Não há auxílio financeiro disponível para projetos guiados.

A participação como ouvinte não está disponível para projetos guiados.

Na parte superior da página, você pode clicar no nível de experiência deste projeto guiado para visualizar os pré-requisitos de conhecimento. Em cada nível dos projetos guiados, seu instrutor o guiará passo a passo.

Sim, tudo o que você precisa para completar o projeto guiado estará disponível em uma área de trabalho na nuvem disponível no seu navegador.

Você aprenderá na prática ao completar tarefas em um ambiente com tela dividida, diretamente em seu navegador. No lado esquerdo da tela, você completa a tarefa no seu espaço de trabalho. No lado direito, você assiste a um instrutor que o guiará pelo projeto, passo a passo.