Image Denoising Using AutoEncoders in Keras and Python

4.5
estrelas
260 classificações
oferecido por
Coursera Project Network
6.568 já se inscreveram
Neste projeto guiado, você irá:

Understand the theory and intuition behind Autoencoders

Build and train an image denoising autoencoder using Keras with Tensorflow 2.0 as a backend

Assess the performance of trained autoencoders using various Key performance indicators

Clock2 hours
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this 1-hour long project-based course, you will be able to: - Understand the theory and intuition behind Autoencoders - Import Key libraries, dataset and visualize images - Perform image normalization, pre-processing, and add random noise to images - Build an Autoencoder using Keras with Tensorflow 2.0 as a backend - Compile and fit Autoencoder model to training data - Assess the performance of trained Autoencoder using various KPIs Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

  • Deep Learning
  • Artificial Intelligence (AI)
  • Machine Learning
  • Python Programming
  • Computer Vision

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Project Overview

  2. Import libraries and datasets

  3. Perform data visualization

  4. Perform data preprocessing

  5. Understand the theory and intuition behind autoencoders

  6. Build and train autoencoder model

  7. Evaluate trained model performance

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Instrutores

Avaliações

Principais avaliações do IMAGE DENOISING USING AUTOENCODERS IN KERAS AND PYTHON

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao estudante.