Loading...

See you next module!

Having seen that multivariate calculus is really no more complicated than the univariate case, we now focus on applications of the chain rule. Neural networks are one of the most popular and successful conceptual structures in machine learning. They are build up from a connected web of neurons and inspired by the structure of biological brains. The behaviour of each neuron is influenced by a set of control parameters, each of which needs to be optimised to best fit the data. The multivariate chain rule can be used to calculate the influence of each parameter of the networks, allow them to be updated during training.

Vídeos recomendados

Sobre o Coursera

Courses, Specializations, and Online Degrees taught by top instructors from the world's best universities and educational institutions.

Community
Join a community of 40 million learners from around the world
Certificate
Earn a skill-based course certificate to apply your knowledge
Career
Gain confidence in your skills and further your career