Case Studies: Finding Similar Documents
A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover?
In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce.
Learning Outcomes: By the end of this course, you will be able to:
-Create a document retrieval system using k-nearest neighbors.
-Identify various similarity metrics for text data.
-Reduce computations in k-nearest neighbor search by using KD-trees.
-Produce approximate nearest neighbors using locality sensitive hashing.
-Compare and contrast supervised and unsupervised learning tasks.
-Cluster documents by topic using k-means.
-Describe how to parallelize k-means using MapReduce.
-Examine probabilistic clustering approaches using mixtures models.
-Fit a mixture of Gaussian model using expectation maximization (EM).
-Perform mixed membership modeling using latent Dirichlet allocation (LDA).
-Describe the steps of a Gibbs sampler and how to use its output to draw inferences.
-Compare and contrast initialization techniques for non-convex optimization objectives.
-Implement these techniques in Python.

Na lição

Clustering with k-means

In clustering, our goal is to group the datapoints in our dataset into disjoint sets. Motivated by our document analysis case study, you will use clustering to discover thematic groups of articles by "topic". These topics are not provided in this unsupervised learning task; rather, the idea is to output such cluster labels that can be post-facto associated with known topics like "Science", "World News", etc. Even without such post-facto labels, you will examine how the clustering output can provide insights into the relationships between datapoints in the dataset. The first clustering algorithm you will implement is k-means, which is the most widely used clustering algorithm out there. To scale up k-means, you will learn about the general MapReduce framework for parallelizing and distributing computations, and then how the iterates of k-means can utilize this framework. You will show that k-means can provide an interpretable grouping of Wikipedia articles when appropriately tuned.