This course is an introduction into formal concept analysis (FCA), a mathematical theory oriented at applications in knowledge representation, knowledge acquisition, data analysis and visualization. It provides tools for understanding the data by representing it as a hierarchy of concepts or, more exactly, a concept lattice. FCA can help in processing a wide class of data types providing a framework in which various data analysis and knowledge acquisition techniques can be formulated. In this course, we focus on some of these techniques, as well as cover the theoretical foundations and algorithmic issues of FCA.
Upon completion of the course, the students will be able to use the mathematical techniques and computational tools of formal concept analysis in their own research projects involving data processing. Among other things, the students will learn about FCA-based approaches to clustering and dependency mining.
The course is self-contained, although basic knowledge of elementary set theory, propositional logic, and probability theory would help.
End-of-the-week quizzes include easy questions aimed at checking basic understanding of the topic, as well as more advanced problems that may require some effort to be solved.

Na lição

Formal concept analysis in a nutshell

This week we will learn the basic notions of formal concept analysis (FCA). We'll talk about some of its typical applications, such as conceptual clustering and search for implicational dependencies in data. We'll see a few examples of concept lattices and learn how to interpret them. The simplest data structure in formal concept analysis is the formal context. It is used to describe objects in terms of attributes they have. Derivation operators in a formal context link together object and attribute subsets; they are used to define formal concepts. They also give rise to closure operators, and we'll talk about what these are, too. We'll have a look at software called Concept Explorer, which is good for basic processing of formal contexts. We'll also talk a little bit about many-valued contexts, where attributes may have many values. Conceptual scaling is used to transform many-valued contexts into "standard", one-valued, formal contexts.