Why Regularization Reduces Overfitting?

video-placeholder
Loading...
Visualizar o programa do curso

Habilidades que você aprenderá

Tensorflow, Deep Learning, Mathematical Optimization, hyperparameter tuning

Avaliações

4.9 (61,601 classificações)

  • 5 stars
    88,21%
  • 4 stars
    10,61%
  • 3 stars
    1%
  • 2 stars
    0,11%
  • 1 star
    0,05%

XG

30 de out de 2017

Thank you Andrew!! I know start to use Tensorflow, however, this tool is not well for a research goal. Maybe, pytorch could be considered in the future!! And let us know how to use pytorch in Windows.

CV

23 de dez de 2017

Exceptional Course, the Hyper parameters explanations are excellent every tip and advice provided help me so much to build better models, I also really liked the introduction of Tensor Flow

Thanks.

Na lição

Practical Aspects of Deep Learning

Discover and experiment with a variety of different initialization methods, apply L2 regularization and dropout to avoid model overfitting, then apply gradient checking to identify errors in a fraud detection model.

Ministrado por

  • Placeholder

    Andrew Ng

    Instructor

  • Placeholder

    Kian Katanforoosh

    Senior Curriculum Developer

  • Placeholder

    Younes Bensouda Mourri

    Curriculum developer

Explore nosso catálogo

Registre-se gratuitamente e obtenha recomendações, atualizações e ofertas personalizadas.