Weight Initialization for Deep Networks

video-placeholder
Loading...
Visualizar o programa do curso

Habilidades que você aprenderá

Tensorflow, Deep Learning, Mathematical Optimization, hyperparameter tuning

Avaliações

4.9 (61,421 classificações)

  • 5 stars
    88,22%
  • 4 stars
    10,60%
  • 3 stars
    1%
  • 2 stars
    0,11%
  • 1 star
    0,05%

CV

23 de dez de 2017

Exceptional Course, the Hyper parameters explanations are excellent every tip and advice provided help me so much to build better models, I also really liked the introduction of Tensor Flow

Thanks.

JS

4 de abr de 2021

Fantastic course and although it guides you through the course (and may feel less challenging to some) it provides all the building blocks for you to latter apply them to your own interesting project.

Na lição

Practical Aspects of Deep Learning

Discover and experiment with a variety of different initialization methods, apply L2 regularization and dropout to avoid model overfitting, then apply gradient checking to identify errors in a fraud detection model.

Ministrado por

  • Placeholder

    Andrew Ng

    Instructor

  • Placeholder

    Kian Katanforoosh

    Senior Curriculum Developer

  • Placeholder

    Younes Bensouda Mourri

    Curriculum developer

Explore nosso catálogo

Registre-se gratuitamente e obtenha recomendações, atualizações e ofertas personalizadas.