Train / Dev / Test sets

video-placeholder
Loading...
Visualizar o programa do curso

Habilidades que você aprenderá

Tensorflow, Deep Learning, Mathematical Optimization, hyperparameter tuning

Avaliações

4.9 (61,600 classificações)

  • 5 stars
    88,21%
  • 4 stars
    10,61%
  • 3 stars
    1%
  • 2 stars
    0,11%
  • 1 star
    0,05%

HD

5 de dez de 2019

I enjoyed it, it is really helpful, id like to have the oportunity to implement all these deeply in a real example.

the only thing i didn't have completely clear is the barch norm, it is so confuse

NA

13 de jan de 2020

After completion of this course I know which values to look at if my ML model is not performing up to the task. It is a detailed but not too complicated course to understand the parameters used by ML.

Na lição

Practical Aspects of Deep Learning

Discover and experiment with a variety of different initialization methods, apply L2 regularization and dropout to avoid model overfitting, then apply gradient checking to identify errors in a fraud detection model.

Ministrado por

  • Placeholder

    Andrew Ng

    Instructor

  • Placeholder

    Kian Katanforoosh

    Senior Curriculum Developer

  • Placeholder

    Younes Bensouda Mourri

    Curriculum developer

Explore nosso catálogo

Registre-se gratuitamente e obtenha recomendações, atualizações e ofertas personalizadas.