Informações sobre o curso
4.6
1,919 classificações
357 avaliações

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Aprox. 35 horas para completar

Sugerido: 7 недель исследования, 3-5 часов / неделю...

Russo

Legendas: Russo

Habilidades que você terá

Python ProgrammingMachine Learning (ML) AlgorithmsMachine LearningPandas

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Aprox. 35 horas para completar

Sugerido: 7 недель исследования, 3-5 часов / неделю...

Russo

Legendas: Russo

Programa - O que você aprenderá com este curso

Semana
1
5 horas para concluir

Знакомство с анализом данных и машинным обучением

Добро пожаловать! В первом модуле курса мы расскажем о задачах, которые решает машинное обучение, определим базовый набор понятий и введем необходимые обозначения. Также мы расскажем про основные библиотеки языка Python для работы с данными (NumPy, Pandas, Scikit-Learn), которые понадобятся для выполнения практических заданий на протяжении всего курса....
5 vídeos (total de (Total 57 mín.) min), 4 leituras, 2 testes
5 videos
Формальная постановка задачи машинного обучения14min
Примеры применения машинного обучения — 110min
Примеры применения машинного обучения — 213min
Проблема переобучения. Методология решения задач машинного обучения.15min
4 leituras
Приветствие и вводная информация10min
FAQ10min
Python для анализа данных10min
Работа с векторами и матрицами в NumPy10min
1 exercício prático
Основные понятия машинного обучения8min
4 horas para concluir

Логические методы классификации

Логические методы делают классификацию объектов на основе простых правил, благодаря чему являются интерпретируемыми и легкими в реализации. При объединении в композицию логические модели позволяют решать многие задачи с высоким качеством. В этом модуле мы изучим основной класс логических алгоритмов — решающие деревья. Также мы поговорим про объединение деревьев в композицию, называемую случайным лесом....
4 vídeos (total de (Total 35 mín.) min), 2 testes
4 videos
Алгоритм построения решающего дерева6min
Обработка пропусков. Достоинства и недостатки решающих деревьев.8min
Способы устранения недостатков решающих деревьев12min
1 exercício prático
Решающие деревья4min
Semana
2
7 horas para concluir

Метрические методы классификации

Метрические методы проводят классификацию на основе сходства, благодаря чему могут работать на данных со сложной структурой — главное, чтобы между объектами можно было измерить расстояние. Мы изучим метод k ближайших соседей, а также способ его обобщения на задачи регрессии с помощью ядерного сглаживания....
4 vídeos (total de (Total 34 mín.) min), 1 leitura, 3 testes
4 videos
Метод окна Парзена8min
Метрические методы классификации в задаче восстановления регрессии9min
Обнаружение выбросов6min
1 leituras
Анкета10min
1 exercício prático
Метрические методы4min
4 horas para concluir

Линейные методы классификации

Линейные модели — один из наиболее изученных классов алгоритмов в машинном обучении. Они легко масштабируются и широко применяются для работы с большими данными. В этом модуле мы изучим метод стохастического градиента для настойки линейных классификаторов, познакомимся с регуляризацией и обсудим некоторые тонкости работы с линейными методами....
5 vídeos (total de (Total 31 mín.) min), 2 testes
5 videos
Градиентные методы численной минимизации и алгоритм SG5min
Алгоритм SAG3min
Метод стохастического градиента. Достоинства и недостатки.10min
Проблема переобучения5min
1 exercício prático
Линейные методы и градиентный спуск6min
Semana
3
10 horas para concluir

Метод опорных векторов и логистическая регрессия

Линейные методы имеют несколько очень важных подвидов, о которых пойдет речь в этом модуле. Метод опорных векторов максимизирует отступы объектов, что тесно связано с минимизацией вероятности переобучения. При этом он позволяет очень легко перейти к построению нелинейной разделяющей поверхности благодаря ядровому переходу. Логистическая регрессия позволяет оценивать вероятности принадлежености классам, что оказывается полезным во многих прикладных задачах....
5 vídeos (total de (Total 38 mín.) min), 5 testes
5 videos
Метод опорных векторов. Обобщение для нелинейного случая8min
Логистическая регрессия6min
Пример применения логистической регрессии5min
Регуляризованная логистическая регрессия2min
2 exercícios práticos
Особенности метода опорных векторов6min
Логистическая регрессия4min
4 horas para concluir

Метрики качества классификации

В машинном обучении существует большое количество метрик качества, каждая из которых имеет свою прикладную интерпретацию и направлена на измерение конкретного свойства решения. В этом модуле мы обсудим, какие бывают метрики качества бинарной и многоклассовой классификации, а также рассмотрим способы сведения многоклассовых задач к двухклассовым....
3 vídeos (total de (Total 31 mín.) min), 2 testes
3 videos
Метрики качества классификации — 212min
Многоклассовая классификация7min
1 exercício prático
Метрики качества классификации6min
Semana
4
3 horas para concluir

Линейная регрессия

В этом модуле мы изучим линейные модели для регрессии и обсудим их связь с сингулярным разложением матрицы "объекты-признаки"....
3 vídeos (total de (Total 23 mín.) min), 1 teste
3 horas para concluir

Понижение размерности и метод главных компонент

В прикладных задачах часто возникает потребность в уменьшении количества признаков — например, для ускорения работы моделей. В этом модуле мы обсудим подходы к отбору признаков, а также изучим метод главных компонент, один из самых популярных методов понижения размерности....
1 vídeo (total de (Total 14 mín.) min), 1 teste
4.6
357 avaliaçõesChevron Right

39%

comecei uma nova carreira após concluir estes cursos

47%

consegui um benefício significativo de carreira com este curso

31%

recebi um aumento ou promoção

Melhores avaliações

por ALSep 25th 2018

Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.

por DDFeb 10th 2016

Спасибо за курс. Хороший материал. Отличные задания.\n\nЕсть желание пройти курс "Практическое машинное обучение" с большим количеством примеров и практик от авторов этого курса.

Instrutores

Avatar

Константин Вячеславович Воронцов

Профессор
Факультет компьютерных наук НИУ ВШЭ, Школа анализа данных Яндекса
Avatar

Evgeny Sokolov

Senior Lecturer
HSE Faculty of Computer Science

Sobre National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on www.hse.ru...

Sobre Yandex School of Data Analysis

В Школе анализа данных в течение двух лет студенты осваивают машинное обучение, компьютерное зрение, анализ текстов на естественном языке и другие направления современных компьютерных наук. Эти предметы обычно не входят в университетские программы, но при этом пользуются огромным спросом в отраслях, где уже применяются наукоёмкие информационные технологии. Некоторые выпускники Школы попадают на стажировку в Яндекс, где применяют только что полученные знания....

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você adquire o Certificado, ganha acesso a todo o material do curso, incluindo avaliações com nota atribuída. Após concluir o curso, seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.