Chevron Left
Voltar para Поиск структуры в данных

Поиск структуры в данных, Instituto de Física e Tecnologia de Moscou

4.7
1,032 classificações
105 avaliações

Informações sobre o curso

В машинном обучении встречаются задачи, где нужно изучить структуру данных, найти в них скрытые взаимосвязи и закономерности. Например, нам может понадобиться описать каждого клиента банка с помощью меньшего количества переменных — для этого можно использовать методы понижения размерности, основанные на матричных разложениях. Такие методы пытаются сформировать новые признаки на основе старых, сохранив как можно больше информации в данных. Другим примером может служить задача тематического моделирования, в которой для набора текстов нужно построить модель, объясняющую процесс формирования этих текстов из небольшого количества тем. Такие задачи назвают обучением без учителя. В отличие от обучения с учителем, в них не предполагают восстановление зависимости между объектами и целевой переменной. Из этого курса вы узнаете об алгоритмах кластеризации данных, с помощью которых, например, можно искать группы схожих клиентов мобильного оператора. Вы научитесь строить матричные разложения и решать задачу тематического моделирования, понижать размерность данных, искать аномалии и визуализировать многомерные данные....

Melhores avaliações

por PK

May 04, 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

por AA

Jan 09, 2017

Интересный курс, замечательные преподаватели. Есть моменты когда лекция довольно сложная, а тест простой, это оставляет тревожное ощущение недоученности :)

Filtrar por:

101 avaliações

por Горячев Валентин Дмитриевич

Apr 22, 2019

Все остальное отлично! Преподаватели хорошо рассказывают

Последнее задание c BiaARTM не удалось сделать, т.к. не смог установить данную библиотеку.

И ответы в некоторых заданиях пора изменить, т.к. бывает, что ответы Python 3 не принимаются(рассчитано ведь на Python 2.7)

por Sergey

Mar 19, 2019

Good course. Outstanding choice of topics. The most prominent techniques for clustering are covered in an easy-to-read way. I especially enjoyed the last week's theory on processing texts. It's awesome that the authors have included the references for further reading; I've downloaded those, and now I'm looking forward to read it soon.

As usual for this set of courses, I have mixed feelings with regard to the programming assignments. From those, I mostly mastered installing various versions of Python packages. On the other hand, it can be viewed as a nice hands-on training in using the built-in functions for clustering purposes, and running some general Python routines, such as list comprehension etc. This way, it totally fits my personal goals, and I'm moving on to the next course.

por Шаланкин Максим Дмитриевич

Mar 14, 2019

Курс достаточно старый, возникает много конфликтов версий, данные не обновляют. Ещё пока релевантная информация. UPD: (прошёл 5 курсов из этой специализации, никому не советую проходить больше двух первых, потому что цена - качество не соответсвуют)

por Исаев Денис Вадимович

Mar 11, 2019

Не понравилась неделя тематического моделирования.

por Майоров Константин Николаевич

Mar 04, 2019

Хотел бы поблагодарить организаторов и преподавателей курса! Материал дается очень доступным и понятным способом! С нетерпением жду прохождения новых курсов специализации!

por Роман Черёмухин

Jan 17, 2019

Было интересно.

por Petr Kuderov

Jan 10, 2019

По-моему, отличный курс.

Лично для меня последняя неделя по тематическому моделированию оказалась очень длительной для изучения (потратил пару недель, тогда как первые три недели прошел меньше чем за неделю). В принципе, совсем не обязательно было углубляться, но я не устоял перед соблазном и поразбирался с EM-алгоритмом на будущее.

Курс рекомендую - отлично дополняет второй курс про обучение с учителем. Посмотрим, что будет дальше.

por Artem Drofa

Dec 20, 2018

Хороший курс, но без поиска доп. информации в интеренете почти по всем темам не обошлось.

С другой стороны, это естественный процесс при самообразовании. Так что все ок.

por Лавренов Дмитрий Владимирович

Dec 09, 2018

Доволен первыми тремя неделями и категорически недоволен последней, 4й. Как минимум из-за отвратительного задания по программированию.

Тем не менее, большое спасибо за курс!

por YaMolekula

Dec 08, 2018

Задания слишком простые