Chevron Left
Voltar para Поиск структуры в данных

Поиск структуры в данных, Instituto de Física e Tecnologia de Moscou

4.7
966 classificações
102 avaliações

Informações sobre o curso

В машинном обучении встречаются задачи, где нужно изучить структуру данных, найти в них скрытые взаимосвязи и закономерности. Например, нам может понадобиться описать каждого клиента банка с помощью меньшего количества переменных — для этого можно использовать методы понижения размерности, основанные на матричных разложениях. Такие методы пытаются сформировать новые признаки на основе старых, сохранив как можно больше информации в данных. Другим примером может служить задача тематического моделирования, в которой для набора текстов нужно построить модель, объясняющую процесс формирования этих текстов из небольшого количества тем. Такие задачи назвают обучением без учителя. В отличие от обучения с учителем, в них не предполагают восстановление зависимости между объектами и целевой переменной. Из этого курса вы узнаете об алгоритмах кластеризации данных, с помощью которых, например, можно искать группы схожих клиентов мобильного оператора. Вы научитесь строить матричные разложения и решать задачу тематического моделирования, понижать размерность данных, искать аномалии и визуализировать многомерные данные....

Melhores avaliações

por PK

May 04, 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

por AA

Jan 09, 2017

Интересный курс, замечательные преподаватели. Есть моменты когда лекция довольно сложная, а тест простой, это оставляет тревожное ощущение недоученности :)

Filtrar por:

97 avaliações

por Шаланкин Максим Дмитриевич

Feb 04, 2019

Курс достаточно старый, возникает много конфликтов версий, данные не обновляют. Ещё пока релевантная информация.

por Роман Черёмухин

Jan 17, 2019

Было интересно.

por Petr Kuderov

Jan 10, 2019

По-моему, отличный курс.

Лично для меня последняя неделя по тематическому моделированию оказалась очень длительной для изучения (потратил пару недель, тогда как первые три недели прошел меньше чем за неделю). В принципе, совсем не обязательно было углубляться, но я не устоял перед соблазном и поразбирался с EM-алгоритмом на будущее.

Курс рекомендую - отлично дополняет второй курс про обучение с учителем. Посмотрим, что будет дальше.

por Artem Drofa

Dec 20, 2018

Хороший курс, но без поиска доп. информации в интеренете почти по всем темам не обошлось.

С другой стороны, это естественный процесс при самообразовании. Так что все ок.

por Лавренов Дмитрий Владимирович

Dec 09, 2018

Доволен первыми тремя неделями и категорически недоволен последней, 4й. Как минимум из-за отвратительного задания по программированию.

Тем не менее, большое спасибо за курс!

por YaMolekula

Dec 08, 2018

Задания слишком простые

por Rustem Yulaev

Dec 01, 2018

Классный курс, но есть проблемы с домашками

por Gorbatsevich Ivan

Nov 07, 2018

ок

por Konstantin Avramenko

Oct 31, 2018

Хорошая теоретическая основа, видео. Но задания все пора обновлять. Используются старые версии библиотек. В видео по установке и работе с библиотеками сильно устаревшая информация. Впрочем, это не сильно мешает понять тематическое моделирование.

por Курочка Александр Юрьевич

Oct 29, 2018

Не удается установить Bigartm