Informações sobre o curso
4.8
166 classificações
59 avaliações
100% online

100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.
Horas para completar

Aprox. 55 horas para completar

Sugerido: 5 hours/week...
Idiomas disponíveis

Inglês

Legendas: Inglês
100% online

100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.
Horas para completar

Aprox. 55 horas para completar

Sugerido: 5 hours/week...
Idiomas disponíveis

Inglês

Legendas: Inglês

Programa - O que você aprenderá com este curso

Semana
1
Horas para completar
1 hora para concluir

Monte Carlo algorithms (Direct sampling, Markov-chain sampling)

Dear students, welcome to the first week of Statistical Mechanics: Algorithms and Computations! <br> Here are a few details about the structure of the course: For each week, a lecture and a tutorial videos will be presented, together with a downloadable copy of all the relevant python programs mentioned in the videos. Some in-video questions and practice quizzes will help you to review the material, with no effect on the final grade. A mandatory peer-graded assignment is also present, for weeks from 1 to 9, and it will expand on the lectures' topics, letting you reach a deeper understanding. The nine peer-graded assignments will make up for 50% of the grade, while the other half will come from a final exam, after the last lecture. <br> In this first week, we will learn about algorithms by playing with a pebble on the Monte Carlo beach and at the Monaco heliport. In the tutorial we will use the 3x3 pebble game to understand the essential concepts of Monte Carlo techniques (detailed balance, irreducibility, and a-periodicity), and meet the celebrated Metropolis algorithm. Finally, the homework session will let you understand some useful aspects of Markov-chain Monte Carlo, related to convergence and error estimations....
Reading
3 vídeos (total de (Total 62 mín.) min), 2 leituras, 2 testes
Video3 videos
Tutorial 1: Exponential convergence and the 3x3 pebble game32min
Homework Session 1: From the one-half rule to the bunching method1min
Reading2 leituras
Python programs and references10min
Errata (Lecture 1)10min
Quiz1 exercício prático
Practice quiz 1: spotting a correct algorithm4min
Semana
2
Horas para completar
1 hora para concluir

Hard disks: From Classical Mechanics to Statistical Mechanics

In Week 2, you will get in touch with the hard-disk model, which was first simulated by Molecular Dynamics in the 1950's. We will describe the difference between direct sampling and Markov-chain sampling, and also study the connection of Monte Carlo and Molecular Dynamics algorithms, that is, the interface between Newtonian mechanics and statistical mechanics. The tutorial includes classical concepts from statistical physics (partition function, virial expansion, ...), and the homework session will show that the equiprobability principle might be more subtle than expected. ...
Reading
3 vídeos (total de (Total 71 mín.) min), 1 leitura, 2 testes
Video3 videos
Tutorial 2: Equiprobability, partition functions, and virial expansions for hard disks32min
Homework Session 2: Paradoxes of hard-disk simulations in a box2min
Reading1 leituras
Python programs and references10min
Quiz1 exercício prático
Practice quiz 2: spotting a correct algorithm (continued)4min
Semana
3
Horas para completar
1 hora para concluir

Entropic interactions and phase transitions

After the hard disks of Week 2, in Week 3 we switch to clothe-pins aligned on a washing line. This is a great model to learn about the entropic interactions, coming only from statistical-mechanics considerations. In the tutorial you will see an example of a typical situation: Having an exact solution often corresponds to finding a perfect algorithm to sample configurations. Finally, in the homework session we will go back to hard disks, and get a simple evidence of the transition between a liquid and a solid, for a two-dimensional system....
Reading
3 vídeos (total de (Total 62 mín.) min), 2 leituras, 2 testes
Video3 videos
Tutorial 3: Algorithms, exact solutions, thermodynamic limit31min
Homework Session 3: Two-dimensional liquids and solids2min
Reading2 leituras
Python programs and references10min
Errata (Tutorial 3)10min
Quiz1 exercício prático
Practice quiz 3: Spotting a correct algorithm (continued)4min
Semana
4
Horas para completar
1 hora para concluir

Sampling and integration

In Week 4 we will deepen our understanding of sampling, and its connection with integration, and this will allow us to introduce another pillar of statistical mechanics (after the equiprobability principle): the Maxwell and Boltzmann distributions of velocities and energies. In the homework session, we will push the limits of sampling until we can compute the integral of a sphere... in 200 dimensions! ...
Reading
3 vídeos (total de (Total 69 mín.) min), 1 leitura, 2 testes
Video3 videos
Tutorial 4: Sampling discrete and one-dimensional distributions34min
Homework Session 4: Sampling and integration in high dimensions2min
Reading1 leituras
Python programs and references10min
Quiz1 exercício prático
Practice quiz 4: four disks in a box6min

Instrutores

Avatar

Werner Krauth

Directeur de recherches au CNRS
Department of physics

Sobre École normale supérieure

L’École normale supérieure (ENS) est un établissement d'enseignement supérieur pour les études prédoctorales et doctorales (graduate school) et un haut lieu de la recherche française. L'ENS offre à 300 nouveaux étudiants et 200 doctorants chaque année une formation de haut niveau, largement pluridisciplinaire, des humanités et sciences sociales aux sciences dures. Régulièrement distinguée au niveau international, l'ENS a formé 10 médailles Fields et 13 prix Nobel....

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.