Chevron Left
Voltar para Improving your statistical inferences

Comentários e feedback de alunos de Improving your statistical inferences da instituição Universidade Tecnológica de Eindhoven

4.9
estrelas
731 classificações

Sobre o curso

This course aims to help you to draw better statistical inferences from empirical research. First, we will discuss how to correctly interpret p-values, effect sizes, confidence intervals, Bayes Factors, and likelihood ratios, and how these statistics answer different questions you might be interested in. Then, you will learn how to design experiments where the false positive rate is controlled, and how to decide upon the sample size for your study, for example in order to achieve high statistical power. Subsequently, you will learn how to interpret evidence in the scientific literature given widespread publication bias, for example by learning about p-curve analysis. Finally, we will talk about how to do philosophy of science, theory construction, and cumulative science, including how to perform replication studies, why and how to pre-register your experiment, and how to share your results following Open Science principles. In practical, hands on assignments, you will learn how to simulate t-tests to learn which p-values you can expect, calculate likelihood ratio's and get an introduction the binomial Bayesian statistics, and learn about the positive predictive value which expresses the probability published research findings are true. We will experience the problems with optional stopping and learn how to prevent these problems by using sequential analyses. You will calculate effect sizes, see how confidence intervals work through simulations, and practice doing a-priori power analyses. Finally, you will learn how to examine whether the null hypothesis is true using equivalence testing and Bayesian statistics, and how to pre-register a study, and share your data on the Open Science Framework. All videos now have Chinese subtitles. More than 30.000 learners have enrolled so far! If you enjoyed this course, I can recommend following it up with me new course "Improving Your Statistical Questions"...

Melhores avaliações

MS

13 de mai de 2021

Eye opening course. My first introduction to some of the issues surrounding p-values as well as how to better utilize them and what they truly represent. My first introduction to effect sizes as well.

YK

1 de mar de 2017

Excellent course. The lecturer has written code snippets that let the students visualize the meaning and interrelationship of p-values confidence-intervals power effect-size bayesian-inference.

Filtrar por:

201 — 225 de 238 Avaliações para o Improving your statistical inferences

por Farid

12 de mar de 2017

por Maureen M

20 de mar de 2019

por David S

15 de fev de 2021

por Mark K

10 de jul de 2020

por Wenkai S

16 de fev de 2022

por Pablo B

22 de set de 2017

por Oana S

27 de dez de 2016

por Maheshwar G

6 de jun de 2020

por Zahra A

28 de abr de 2017

por Biju S

5 de dez de 2017

por Alexander P

23 de jul de 2017

por Pedro V

19 de dez de 2020

por Maria A T

16 de jun de 2017

por Martin K

6 de nov de 2017

por Françoise G

2 de jan de 2021

por Prabal P S B

14 de jul de 2021

por Sarah W

12 de fev de 2020

por Nareg K

30 de nov de 2018

por Michiel T

24 de jul de 2018

por Jinhao C

24 de jun de 2018

por Edilson S

9 de abr de 2018

por Daniel K

14 de jan de 2019

por Alicia S J

11 de nov de 2018

por José M V S

20 de out de 2020

por Marija A

12 de out de 2018