Informações sobre o curso

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível intermediário

Aprox. 17 horas para completar

Sugerido: 9 hours/week...

Russo

Legendas: Russo

Habilidades que você terá

Logistic RegressionR ProgrammingPoisson RegressionGeneralized Linear Mixed Model (GLMM)Random Effects Model

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível intermediário

Aprox. 17 horas para completar

Sugerido: 9 hours/week...

Russo

Legendas: Russo

Programa - O que você aprenderá com este curso

Semana
1
4 horas para concluir

Знакомство со смешанными линейными моделями

В этом модуле вы сделаете первый шаг в мир смешанных линейных моделей. Вы познакомитесь с понятием случайного фактора. Вы увидите примеры дизайнов сбора данных, когда использование таких факторов становится необходимым и поймете, что происходит с моделями, если такие факторы не учитывать или учитывать нерационально. Вам предстоит построить смешанную модель, предполагающую, что переменная-отклик подчиняется нормальному распределению. На этом примере вы научитесь трактовать результаты построения смешанных моделей и визуализировать их. Вы увидите, что подходы к работе со смешанными моделями существенно отличаются от более привычных нам форм регрессионного и дисперсионного анализа. ...
14 vídeos (total de (Total 90 mín.) min), 2 leituras, 1 teste
14 videos
Пример - недосып и время реакции6min
Недосып. Почему обычные методы не работают?4min
Фиксированные и случайные факторы4min
GLMM со случайным отрезком5min
Визуализация предсказаний GLMM со случайным отрезком7min
Индуцированная корреляция9min
Диагностика модели со случайным отрезком6min
GLMM со случайным отрезком и углом наклона5min
Визуализация предсказаний GLMM со случайным отрезком и углом наклона4min
Диагностика модели со случайным отрезком и углом наклона4min
Смешанные линейные модели9min
Тестирование гипотез в смешанных моделях12min
Что мы знаем и что будет дальше5min
2 leituras
Обзор курса10min
Знакомство со смешанными линейными моделями10min
Semana
2
3 horas para concluir

Моделирование структуры дисперсии в смешанных моделях

Одним из ключевых ограничений при работе с моделями, основанными на нормальном распределении переменной отклика, является отсутствие гетероскедастичности. Тем не менее признаки неравенства дисперсии для разных значений ковариат выявляются очень часто. Если гетерогенность дисперсий не учитывать, это может привести к неадекватной трактовке результатов подбора модели. В этом модуле мы рассмотрим один из возможных подходов к решению этой проблемы - моделирование структуры дисперсии. Вы познакомитесь с нескольким способами моделирования связи между варьированием переменной отклика и непрерывными или дискретными предикторами, которые называются ковариаты дисперсии. Мы рассмотрим как можно ввести такой компонент, как в простую, так и смешанную линейную модель. ...
9 vídeos (total de (Total 65 mín.) min), 1 leitura, 1 teste
9 videos
Пример – сексуальная активность мух10min
Моделирование дисперсии4min
Дисперсия может зависеть от непрерывной ковариаты11min
Дисперсия может зависить от дискретного фактора4min
Моделирование гетерогенности дисперсии – финальная модель8min
Моделирование структуры дисперсии при наличии случайных факторов4min
Модель со случайным фактором5min
Моделируем структуру дисперсии8min
1 leituras
Моделирование структуры дисперсии в смешанных моделях10min
Semana
3
3 horas para concluir

Смешанные линейные модели для счетных данных

В этом модуле вы научитесь моделировать поведение счетных величин при помощи обобщенных смешанных линейных моделей (GLMM). В основе этих моделей будет лежать распределение Пуассона или отрицательное биномиальное распределение. Мы вместе вспомним, что такое связывающей функция, и каким образом она обеспечивает связь между предиктором и счетной зависимой переменной. GLMM для счетных данных требуют, чтобы связь среднего и дисперсии в данных соответствовала ожидаемой для выбранного распределения. Вы научитесь оценивать степень избыточности дисперсии и бороться с ней, если она присутствует. Мы встретим и обсудим случаи, когда функции языка R не будут способны подобрать модель по техническим причинам, и рассмотрим некоторые методы устранения таких проблем. Наконец, мы обсудим особенности трактовки результатов GLMM: интерпретацию коэффициентов моделей, основанных на распределениях для счетных данных, методы тестирования гипотез, пост-хок тесты и способы визуализации результатов....
9 vídeos (total de (Total 61 mín.) min), 1 leitura, 1 teste
9 videos
Пример – саламандры и добыча угля10min
Смешанная модель с Пуассоновским распределением отклика.7min
Диагностика моделей с Пуассоновским распределением. Избыточность дисперсии6min
Смешанная модель с отрицательным биномиальным распределением отклика7min
Диагностика модели с отрицательным биномиальным распределением отклика5min
Тестирование гипотез8min
Визуализация модели4min
Что мы знаем и что будет дальше2min
1 leituras
Материалы: Смешанные линейные модели для счетных данных10min
Semana
4
5 horas para concluir

Смешанные линейные модели для бинарных данных

В последнем модуле этой специализации мы применим весь имеющийся нашем арсенале набор средств для построения модели, в которой зависимая переменная имеет бинарную природу. Мы повторим принципы работы с бинарными переменными: переход от вероятностей к шансам и логитам. Далее мы обсудим материал, в котором несколько случайных факторов находятся в иерархическом соподчинении. На примере модели для этих данных мы рассмотрим разнообразные подводные камни, которые имеются при работе со смешанными моделям с бинарной переменной-откликом....
9 vídeos (total de (Total 74 mín.) min), 1 leitura, 2 testes
9 videos
Пример -- морские звезды и мидии9min
Знакомимся с данными4min
Подбираем модель14min
Дорабатываем модель5min
Анализ итогов7min
Визуализация модели6min
Дополнительные штрихи к модели9min
Что мы знаем и что важное осталось за рамками4min
1 leituras
Материалы: Смешанные линейные модели для бинарных данных10min

Instrutores

Avatar

Варфоломеева Марина Александровна

Старший преподаватель
Кафедра зоологии беспозвоночных
Avatar

Хайтов Вадим Михайлович

Доцент
Кафедра Зоологии беспозвоночных

Sobre Universidade Estadual de São PetersburgoUniversidade Estadual de São Petersburgo

Санкт-Петербургский государственный университет (СПбГУ) — старейший вуз России, основанный в 1724 году. Университет сегодня — научный, образовательный и культурный центр мирового значения, неизменно входящий во все международные рейтинги вузов. В номинации взаимодействие с работодателями QS Graduate Employability 2018 СПбГУ занимает 20 место среди 400 ведущих вузов мира и является лучшим в России. В настоящее время СПбГУ реализует 418 образовательных программ, включающих самые современные направления подготовки и специальности. Сертификат об успешном окончании представленных онлайн-курсов дает 5 дополнительных баллов при поступлении на программы магистратуры и аспирантуры СПбГУ. St Petersburg University is the oldest university in Russia, founded in 1724. The University today is a world-class research, educational and cultural centre which is always included in all international rankings of world universities. St Petersburg University was ranked 20th in QS Graduate Employability Ranking 2018 among 400 leading universities in the world and is the best in Russia. At present, St Petersburg University offers 418 academic programmes, including the most advanced areas and fields of study. The certificate of successful completion of offered online courses gives five additional points when applying for master’s and doctoral programmes at St Petersburg University....

Sobre o Programa de cursos integrados Просто о статистике (с использованием R)

Специализация “Просто о статистике” познакомит вас с основами прикладного анализа данных. Здесь не будет сложной математики, зато мы разберем на практике множество примеров. Вы научитесь описывать данные графически и при помощи описательных статистик; тестировать гипотезы, делая поправки на множественность тестов. При помощи линейных моделей вы сможете анализировать данные разных типов и проверять, выполняются ли допущения, лежащие в основе статистических методов. В частности, мы разберем, как устроены простая и множественная линейная регрессия, дисперсионный анализ, логистическая и Пуассоновская регрессия и т.д. Наконец, вы научитесь строить смешанные линейные модели, позволяющие работать с данными, когда благодаря дизайну сбора материала отдельные наблюдения оказываются взаимозависимы. Для статистического анализа мы будем использовать язык R -- универсальный язык науки о данных. Даже если вы раньше не писали программ, вы сможете научиться не только адаптировать существующие, но и создавать свои собственные скрипты для анализа данных. Каждый из курсов заканчивается практическим проектом, так что к концу специализации вы сможете собрать портфолио из разных видов анализа данных. Отчеты по проекту, выдержанные в традиции воспроизводимых исследований, вы научитесь создавать, не покидая R, при помощи пакетов knitr / rmarkdown....
Просто о статистике (с использованием R)

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você se inscreve no curso, tem acesso a todos os cursos na Especialização e pode obter um certificado quando concluir o trabalho. Seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.