Informações sobre o curso
14,923 visualizações recentes

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.


Legendas: Inglês, Espanhol

Habilidades que você terá

Motion PlanningAutomated Planning And SchedulingA* Search AlgorithmMatlab

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.


Legendas: Inglês, Espanhol

Programa - O que você aprenderá com este curso

4 horas para concluir

Introduction and Graph-based Plan Methods

Welcome to Week 1! In this module, we will introduce the problem of planning routes through grids where the robot can only take on discrete positions. We can model these situations as graphs where the nodes correspond to the grid locations and the edges to routes between adjacent grid cells. We present a few algorithms that can be used to plan paths between a start node and a goal node including the breadth first search or grassfire algorithm, Dijkstra’s algorithm and the A Star procedure.

5 vídeos ((Total 27 mín.)), 4 leituras, 4 testes
5 videos
1.4: A* Algorithm6min
Getting Started with the Programming Assignments3min
4 leituras
Computational Motion Planning Honor Code10min
Getting Started with MATLAB10min
Resources for Computational Motion Planning10min
Graded MATLAB Assignments10min
1 exercício prático
Graph-based Planning Methods8min
2 horas para concluir

Configuration Space

Welcome to Week 2! In this module, we begin by introducing the concept of configuration space which is a mathematical tool that we use to think about the set of positions that our robot can attain. We then discuss the notion of configuration space obstacles which are regions in configuration space that the robot cannot take on because of obstacles or other impediments. This formulation allows us to think about path planning problems in terms of constructing trajectories for a point through configuration space. We also describe a few approaches that can be used to discretize the continuous configuration space into graphs so that we can apply graph-based tools to solve our motion planning problems.

6 vídeos ((Total 19 mín.)), 3 testes
6 videos
2.4: Visibility Graph3min
2.5: Trapezoidal Decomposition1min
2.6: Collision Detection and Freespace Sampling Methods4min
1 exercício prático
Configuration Space8min
1 hora para concluir

Sampling-based Planning Methods

Welcome to Week 3! In this module, we introduce the concept of sample-based path planning techniques. These involve sampling points randomly in the configuration space and then forging collision free edges between neighboring sample points to form a graph that captures the structure of the robots configuration space. We will talk about Probabilistic Road Maps and Randomly Exploring Rapid Trees (RRTs) and their application to motion planning problems.

3 vídeos ((Total 17 mín.)), 2 testes
1 hora para concluir

Artificial Potential Field Methods

Welcome to Week 4, the last week of the course! Another approach to motion planning involves constructing artificial potential fields which are designed to attract the robot to the desired goal configuration and repel it from configuration space obstacles. The robot’s motion can then be guided by considering the gradient of this potential function. In this module we will illustrate these techniques in the context of a simple two dimensional configuration space.

4 vídeos ((Total 19 mín.)), 2 testes
1 exercício prático
Artificial Potential Fields6min
192 avaliaçõesChevron Right


consegui um benefício significativo de carreira com este curso

Principais avaliações do Robotics: Computational Motion Planning

por FCNov 28th 2018

The course was challenging, but fulfilling. Thank you Coursera and University of Pennsylvania for giving this wonderful experience and opportunity that I might not experience in our local community!

por ADJul 3rd 2018

The topic was very interesting, and the assignments weren't overly complicated. Overall, the lesson was fun and informative , despite the bugs in the learning tool(especially, the last assignment.)



CJ Taylor

Professor of Computer and Information Science
School of Engineering and Applied Science

Sobre Universidade da Pensilvânia

The University of Pennsylvania (commonly referred to as Penn) is a private university, located in Philadelphia, Pennsylvania, United States. A member of the Ivy League, Penn is the fourth-oldest institution of higher education in the United States, and considers itself to be the first university in the United States with both undergraduate and graduate studies. ...

Sobre o Programa de cursos integrados Robótica

The Introduction to Robotics Specialization introduces you to the concepts of robot flight and movement, how robots perceive their environment, and how they adjust their movements to avoid obstacles, navigate difficult terrains and accomplish complex tasks such as construction and disaster recovery. You will be exposed to real world examples of how robots have been applied in disaster situations, how they have made advances in human health care and what their future capabilities will be. The courses build towards a capstone in which you will learn how to program a robot to perform a variety of movements such as flying and grasping objects....

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você se inscreve no curso, tem acesso a todos os cursos na Especialização e pode obter um certificado quando concluir o trabalho. Seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.