Voltar para Modelos Regressivos

4.4

estrelas

3,132 classificações

•

525 avaliações

Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing....

MM

Mar 13, 2018

Great course, very informative, with lots of valuable information and examples. Prof. Caffo and his team did a very good job in my opinion. I've found very useful the course material shared on github.

KA

Dec 17, 2017

Excellent course that is jam-packed with useful material! It is quite challenging and gives a thorough grounding in how to approach the process of selecting a linear regression model for a data set.

Filtrar por:

por Joerg H

•Feb 25, 2017

This course is great, if you want to get into it. This was the first time I have been exposed to linear and generalized linear regression. I was overwhelmed by so much information and knowledge that I needed extra time to understand and to bring the pieces from week 1 to week 4 together.

The peer reviews weren't (in my case) not very helpful. I missed concrete feedback on my approach and the result. I would have appreciated some kind of assurance that the achieved results are of quality and on the level of data scientist.

por Samuel Q

•May 28, 2018

Excellent course. The instructor is very knowledgeable and covers the most important aspects of regression models. I found myself relying a lot on the text book; unfortunately it contains a lot of typos but its short and easy to follow. The final course project is very open-ended in the sense that its up to the student to make his/her own analysis of the data. A lot of students complain about it but i thought this was great, as it allowed me to push myself to understand the subject better.

por Do H L

•Jun 17, 2016

This course gives a very thorough and rigorous treatment to the topic of regression models.

It teaches you how to derive from the ground, how regression models are made and how to interpret every information available through regression models.

Although the lectures are very lengthy and dry, the course offers a very rich well of information that is not readily available else where.

Thanks to Brian Caffo for the wealth of information about regression models taught through this course!

por Gayathri N

•Sep 01, 2020

Nice material .A suggestion would be to demarcate topics into 1) Theory version teaching the statistics part of it 2) R version showing the functions/Libraries in R that help doing the same 3) Some sample problems in the video explaining how to calculate sensitivity,specificity etc.. More of these will be helpful for folks like me who are from non statistics background and have been out of touch from Maths for past 20 years.

por Mohammad A

•Nov 06, 2018

This course was a great as an intro to regression models, material was good but needs some update on the links, for the structure of topics it would be better if it was more coherent as many topics were covered randomly in different weeks like residuals.

Thanks for the instructor Brian Caffo for the good material and and clarification of concepts for a better understanding for students.

por Jose A R N

•Nov 06, 2016

My name is Jose Antonio from Brazil. I am looking for a new Data Scientist career (https://www.linkedin.com/in/joseantonio11)

I did this course to get new knowledge about Data Science and better understand the technology and your practical applications.

The course was excellent and the classes well taught by teachers.

Congratulations to Coursera team and Instructors

por Carlos

•Feb 25, 2016

This class, along with "Statistical Inference" and "Machine Language" , are the meat and potato's for data science. I had taken most, if not all of these classes as an undergrad many years ago . The tools for stats have changed significantly and these classes being taught with the open source R language, really put you at the forefront of this new field.

por Roel P

•Aug 17, 2016

The level of this course is a lot higher than the other courses. The course contains a lot of material and exercises which makes it hard to finish the course within the time period of one month. Nevertheless did I like Brian's way of teaching. He's a perfectionist and takes his time to explain everything in detail. I really liked the challenge, 5 stars.

por Tejus S

•Oct 24, 2020

I really liked the way the professors teach a concept; starting from the need for it to step by step logical derivation for it. These courses of Data Science specialization have really inculcated the habits of scientific thinking in data science. Coming from a Biology research background it's really assuring for my skillset and confidence. Thank you.

por Dale H

•May 24, 2018

I felt I had to do a lot of investigation and research into the course topics on my own.... the material is not fed to you spoonful by spoonful. But coming at it this way, I learned a lot. The more effort you invest in this course, the bigger the payoff. The knowledge gained in this course has tremendous value in the data science workplace.

por Kpakpo S M

•Jul 26, 2017

Perfect course toward the data science specialization. It gives good understanding and improve my knowledge of inference statistic. I have the opportunity to explore all the plotting concept and apply them in regression models arena.Good to take this course to step in the concept of machine learning.

por Patrick S

•May 11, 2020

I definitely had to go beyond the lectures to be able to understand the quiz questions, but that is what I expected. Being 50 years out of school, this has been a great experience for me. I do recommend two books that helped me a lot: The Book of R, and R In Action. Filled in a lot of gaps.

por Eduardo v

•Apr 04, 2018

Fantastic course. Brian Caffo is an excellent professor. During my professional life i have worked a lot with regressions, but this course open my mind and gave lots of ideas and different perspectives about that matter. I truly recommend other people to take this course.

por ARVIND K S

•May 21, 2020

It was a wonderful course for regression models, the full import of which I realized when I took up the next course on machine learning. The concepts learned here enhanced by confidence to venture into more advanced machine learning. A highly recommended specialization.

por Nirav D

•Mar 05, 2016

I loved studying Regression Models taught by Prof. Brian Caffo. I think these are very important techniques that I will be able to use for my research and analysis.

I found the teaching to be very in depth in explaining various aspects of regression model development.

por Sadika H

•Jan 15, 2017

I really enjoyed this course. I think the toughest for a newbie like me was the second course R programming. But the following courses including this one flow very well and are easy to follow with real life examples. It does get easier after the second course

por Jan K

•Aug 02, 2017

As good as it could be given the limited amount of time. I have done some coursework on regression models before, but in my opinion the course could not have shown anything more without delving into technicalities. I would recommend it to anyone interested!

por Francisco J D d S F G

•Nov 03, 2016

Love the whole course approach on the importance of linear models and how one should interpret them to get a better grasp of the data one possesses - one should definitely take the statistical inference course before attempting this course beforehand.

por Anuj P

•May 23, 2017

Awesome course. Handling a complex topic in a very lucid manner. However, be prepared of finishing in more than 1 class because it will really take time to grasp the concepts especially if you are not from statistical background. Great job Brian.

por Andrew K

•Mar 13, 2017

Good foundation in the Data Science Certification for Practical Machine Learning. There are 3 areas that I would like to dig deeper so far: Statistical Inference, Regression Models and Practical Machine Learning (perhaps + Deep Learning).

por Lakshman Y

•Jul 18, 2017

This is a fantastic course for new learners of regression models. I have seen so many courses which charges more money but the content and rich knowledge JHU has shared here is great. I highly recommend new people for this course

por Charles W

•Nov 27, 2019

If this was an on-campus course, I would have been a little worried about the quiz grades on the 1st try. However, with the ability to re-take this quizzes, I think this was an Excellent and well thought-out course.

por Christian B

•May 27, 2017

One of the better classes of the specialization. I found the quizzes quizzes (in particular week 3 and 4) quite challenging. I took the ML class before, which I do not recommend. Take this class before the ML class.

por João F

•Feb 06, 2019

Excellent but difficult course. Complex concepts are well presented but it still requires many hours of studying. The topics taught are essential to anyone working or aspiring to work in the field of Data Science.

por Kevin

•Jul 08, 2016

Very concise and good structured course. The new videos are much better than the old ones! Thank you Brian Caffo! However in the discussion forum you find less posts than in the previous format, which is a pitty.

- Como encontrar propósito e sentido na vida
- Compreendendo a pesquisa médica
- Japonês para iniciantes
- Introdução à computação em nuvem
- Fundamentos de Mindfulness
- Fundamentos de Finanças
- Aprendizagem Automática
- Aprendizagem automática usando o Sas Viya
- A ciência do bem-estar
- Rastreamento de Contato com a Covid-19
- IA para todos
- Mercados Financeiros
- Introdução à Psicologia
- Introdução à AWS
- Marketing internacional
- C++
- Análise Preditiva e Mineração de Dados
- Aprendendo a Aprender da UCSD
- Programação para todos da Universidade do Michigan
- Linguagem R da JHU
- Treinamento de CPI do Google CBRS

- Processamento da Linguagem Natural (PLN)
- IA para Medicina
- Bom com palavras: escrita e edição
- Modelagem de doenças infecciosas
- A pronúncia do inglês americano
- Automatização de teste de software
- Aprendizagem profunda
- Python para todosPython para todos
- Ciência de Dados
- Fundamentos de negóciosFundamentos dos Negócios
- Habilidades em Excel para negócios
- Ciência de Dados com Python
- Finanças para todos
- Habilidades de comunicação para engenheiros
- Treinamento de vendas
- Desenvolvimento e gestão de marca pessoal
- Análise de Dados de Negócios da Wharton
- Psicologia Positiva da Universidade da Pensilvânia
- Aprendizagem Automática da Universidade de Washington
- Design Gráfico da CalArts

- Certificados profissionais
- Certificados MasterTrack
- Suporte de TI do Google
- Ciência de dados da IBM
- Engenharia de Dados do Google Cloud
- IA aplicada da IBM
- Arquitetura do Google Cloud
- Analista de Cibersegurança da IBM
- Automação da TI do Google com Python
- Profissional de Mainframe do IBM z/OS
- Gestão aplicada de projetos da UCI
- Certificado em Design Instrucional
- Certificado em Engenharia e Gerenciamento de Construção
- Certificado de Big Data
- Certificado de Aprendizagem Automática em Análise de Dados
- Certificado em Gestão de Inovação e Empreendedorismo
- Certificado de Sustentabilidade e Desenvolvimento
- Certificado de Serviço Social
- Certificado de IA e Aprendizagem Automática
- Certificado de Análise e Visualização de Dados Espaciais

- Graduações em Ciência da Computação
- Graduações em Negócios
- Graduações em Saúde Pública
- Graduações em Ciência de Dados
- Bacharelados
- Bacharelado em Ciência da Computação
- Mestrado em Engenharia Elétrica
- Conclusão de bacharelado
- Mestrado em Gestão
- Mestrado em Ciência da Computação
- Mestrado em Saúde Pública
- Mestrado em Contabilidade
- Mestrado em Tecnologia da Computação e da Informação
- MBA On-line
- Mestrado em Ciência de Dados Aplicada
- MBA Global
- Mestrado em Inovação e Empreendedorismo
- Mestrado em Ciência de Dados
- Mestrado em Ciência da Computação
- Mestrado em saúde pública