Introduction to Statistical Learning will explore concepts in statistical modeling, such as when to use certain models, how to tune those models, and if other options will provide certain trade-offs. We will cover Regression, Classification, Trees, Resampling, Unsupervised techniques, and much more!
oferecido por
Regression and Classification
Universidade do Colorado em BoulderInformações sobre o curso
Intro Statistics and Foundational Math
O que você vai aprender
Express why Statistical Learning is important and how it can be used.
Identify the strengths, weaknesses and caveats of different models and choose the most appropriate model for a given statistical problem.
Determine what type of data and problems require supervised vs. unsupervised techniques.
Habilidades que você terá
- Statistics
- Data Science
- R Programming
Intro Statistics and Foundational Math
oferecido por

Universidade do Colorado em Boulder
CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.
Comece a trabalhar rumo ao seu mestrado
Programa - O que você aprenderá com este curso
Statistical Learning Introduction
Introduction to overarching and foundational concepts in Statistical Learning.
Accuracy
Exploration into assessing models in different situations. How do we define a "best" model for given data?
Simple Linear Regression
Introduction to Simple Linear Regression, such as when and how to use it.
Multiple Linear Regression
A deep dive into multiple linear regression, a strong and extremely popular technique for a continuous target.
Perguntas Frequentes – FAQ
Quando terei acesso às palestras e às tarefas?
O que recebo ao adquirir o Certificado?
Existe algum auxílio financeiro disponível?
Mais dúvidas? Visite o Central de Ajuda ao estudante.