Chevron Left
Voltar para Aprendizagem Automática na Prática

Comentários e feedback de alunos de Aprendizagem Automática na Prática da instituição Universidade Johns Hopkins

4.5
2,578 classificações
483 avaliações

Sobre o curso

One of the most common tasks performed by data scientists and data analysts are prediction and machine learning. This course will cover the basic components of building and applying prediction functions with an emphasis on practical applications. The course will provide basic grounding in concepts such as training and tests sets, overfitting, and error rates. The course will also introduce a range of model based and algorithmic machine learning methods including regression, classification trees, Naive Bayes, and random forests. The course will cover the complete process of building prediction functions including data collection, feature creation, algorithms, and evaluation....

Melhores avaliações

AD

Mar 01, 2017

Issues of every stage of the construction of learning machine model, as well as issues with several different machine learning methods are well and in fine yet very understandable detail explained.

DH

Jun 18, 2018

Excellent introduction to basic ML techniques. A lot of material covered in a short period of time! I will definitely seek more advanced training out of the inspiration provided by this class.

Filtrar por:

451 — 475 de {totalReviews} Avaliações para o Aprendizagem Automática na Prática

por Felipe M S J

Dec 02, 2016

No es un curso en el que se aprenda demasiado.

Parece demasiado avanzado en el uso de "caret" y en vez de enseñar, parece ser que todo debe ser aprendido con anterioridad.

Todo el material adicional que se necesita en el curso, es en general contenido externo.

por max

Jan 18, 2017

not what I expected for a machine learning course

por Jonathan O

Apr 18, 2016

I saw two main issues with this course: 1) dated lecture videos, oftentimes with R code that can't be replicated using up-to-date packages, and 2) lack of thoughtful design: example after example after example after example doesn't really teach you anything.

por Vincenc P

Mar 31, 2016

Course content feels upside down. You'll learn about machine algorithm specifics and caveats before anyone explains what the said algorithm actually hopes to achieve.

por Jeffrey G

Sep 12, 2017

Course project was the only project work, needed more. This course should also use swirl(). Quizzes et al contained mistakes.

por Mehrshad E

Mar 28, 2018

This course really lack something like SWIRL. The lectures only provide a summary, which is not helpful for someone new to the machine learning. Also, the instructure tries to cover pretty much everything but not in depth; instead, I think fewer topics should be covered in depth.

por Anju M

Apr 17, 2016

Felt difficult in understanding the overall course in short duration . 1 month is not enough for this course. I request the authors to make the course much more simpler

por Yang L

Aug 14, 2016

needs more case studies and examples

por Allister G A

Dec 25, 2017

The course needs to elaborate more on hands on discussions.

por Stefan K

Mar 10, 2017

Very shallow content - broad, but not deep. Not many assignments instead of the last one. We hear what we heard before. For the same price, Analytics Edge at EdX is far better choice for practical machine learning.

por Peter G

Feb 28, 2016

Absolutely useless random un-explained list of facts and advices that is thrown to a learner without any attempt to give a systematic approach. Pure waste of time and effort. Can only be suitable to those, who already know the subject well and can use some additional facts that are randomly presented in this "course".

por Norman B

Feb 07, 2016

This is too high level for a machine learning course. You don't exactly learn a lot about the techniques just how to use them and name them out if you're having a conversation with a person. My least favorite course in the series

por Michael R

Jan 19, 2016

lecture can be really unclear sometimes because lecturer breezes through the actual implementation of training/predicting: "use x, y, and z [underlines some stuff on screen]" and you're done

Also lots of mistakes/typos in lecture and quizzes

por Agatha L

Jan 23, 2018

I was disappointed with this course. For better or worse ML is a part of data science and, in this course, the instructional depth was lacking. The lectures provided examples of how to implement a few ML algorithms in R, with very little actual instruction on the intricacies of these algorithms, theoretical foundations etc. Taking the course I felt somewhat cheated (a google search would have done the job of the class), and frustrated with various little bugs in Quiz/Assignment content.

por Haolei F

Mar 13, 2016

Need to get more in-depth

por Y. B

Feb 06, 2016

incomplete and not clear. extremely disappointed.

por Stephen E

Jun 27, 2016

To be honest I don't think this is worth the money.

por Etienne B

Mar 01, 2016

Cannot take the exam, I have to pay... wtf... I will probably pay at the end, but I want to take the class first. Without certificate I cannot prove I took the course.

por yi s

Jul 19, 2016

too general no depth, not recommended for science or engineering degree holders

por Stephane T

Jan 31, 2016

Too much surface, not enough depth.

por Thomas H

Feb 08, 2016

Project description versus requirements were terrible, not sure if the new Coursera format played a role in the issues or not. Quite a few of the homework items require guessing as the answers don't align to the results of the latest tools they have you use. If the first class or three in the series was like this I wouldn't have taken the courses.

por Robert O

Apr 06, 2016

Very little depth. I don't recommend this if you don't already have background in statistics or R. I really didn't learn anything. I mostly just gamed the quizzes and projects.

por Gianluca M

Oct 20, 2016

Gosh I hated hated hated this course. Nothing to learn here. You will just be given lots of names with no explanation whatsoever.

I often felt really angry at the teacher because of the way he would introduce entire prediction models without explaining anything about them. Also, I really didn't like the fact that the course is centered on caret, a "shortcut" package to do stuff fast. Before doing things fast I need to know what I am doing! Finally, the quizzes and assignments are completely disconnected from the courses.

The worst course I have ever taken on coursera.

por Jo S

Feb 04, 2016

Poor compared with some of the others on this specialisation. The lectures are too fast and high level, with no allowance given for people who are unfamiliar with this area and attempting to learn it.

por Danielle S

Mar 22, 2016

Material is very high level. No ppt's are given, so all links presented in the video's cannot be viewed.

Quizzes are based upon old packages, so incorrect answers are provided.

No replies at discussion board from TA"s or instructors.