This course covers two of the most popular open source platforms for MLOps: MLflow and Hugging Face. We’ll go through the foundations on what it takes to get started in these platforms with basic model and dataset operations. You will start with MLflow using projects and models with its powerful tracking system and you will learn how to interact with these registered models from MLflow with full lifecycle examples. Then, you will explore Hugging Face repositories so that you can store datasets, models, and create live interactive demos. Through a series of hands-on exercises, learners will gain practical experience working with these open source platforms. By the end of the course, you will be able to apply MLOps concepts like fine-tuning and deploying containerized models to the Cloud. This course is ideal for anyone looking to break into the field of MLOps or for experienced MLOps professionals who want to improve their programming skills.
oferecido por
Open Source Platforms for MLOps
Duke UniversityInformações sobre o curso
11.114 visualizações recentes
Prazos flexíveis
Redefinir os prazos de acordo com sua programação.
Certificados compartilháveis
Tenha o certificado após a conclusão
100% on-line
Comece imediatamente e aprenda em seu próprio cronograma.
Nível avançado
Intermediate experience in working with Python, Git for version control, Docker for containerization and Kubernetes for deployment and scaling.
Aprox. 13 horas para completar
Inglês
O que você vai aprender
Create new MLflow projects to create and register models.
Use Hugging Face models and datasets to build your own APIs.
Package and deploy Hugging Face to the Cloud using automation.
Prazos flexíveis
Redefinir os prazos de acordo com sua programação.
Certificados compartilháveis
Tenha o certificado após a conclusão
100% on-line
Comece imediatamente e aprenda em seu próprio cronograma.
Nível avançado
Intermediate experience in working with Python, Git for version control, Docker for containerization and Kubernetes for deployment and scaling.
Aprox. 13 horas para completar
Inglês
oferecido por
Programa - O que você aprenderá com este curso
3 horas para concluir
Introduction to MLflow
3 horas para concluir
13 vídeos (Total 82 mín.), 2 leituras, 1 teste
3 horas para concluir
Introduction to Hugging Face
3 horas para concluir
14 vídeos (Total 98 mín.)
3 horas para concluir
Deploying Hugging Face
3 horas para concluir
13 vídeos (Total 76 mín.)
4 horas para concluir
Applied Hugging Face
4 horas para concluir
11 vídeos (Total 65 mín.)
Perguntas Frequentes – FAQ
When will I have access to the lectures and assignments?
What will I get if I purchase the Certificate?
Is financial aid available?
Does your course require any paid software for course completion?
Mais dúvidas? Visite o Central de Ajuda ao estudante.