Voltar para Machine Learning: Regression

estrelas

5,290 classificações

•

987 avaliações

Case Study - Predicting Housing Prices
In our first case study, predicting house prices, you will create models that predict a continuous value (price) from input features (square footage, number of bedrooms and bathrooms,...). This is just one of the many places where regression can be applied. Other applications range from predicting health outcomes in medicine, stock prices in finance, and power usage in high-performance computing, to analyzing which regulators are important for gene expression.
In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data -- such as outliers -- on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets.
Learning Outcomes: By the end of this course, you will be able to:
-Describe the input and output of a regression model.
-Compare and contrast bias and variance when modeling data.
-Estimate model parameters using optimization algorithms.
-Tune parameters with cross validation.
-Analyze the performance of the model.
-Describe the notion of sparsity and how LASSO leads to sparse solutions.
-Deploy methods to select between models.
-Exploit the model to form predictions.
-Build a regression model to predict prices using a housing dataset.
-Implement these techniques in Python....

PD

16 de Mar de 2016

I really enjoyed all the concepts and implementations I did along this course....except during the Lasso module. I found this module harder than the others but very interesting as well. Great course!

KM

4 de Mai de 2020

Excellent professor. Fundamentals and math are provided as well. Very good notebooks for the assignments...it’s just that turicreate library that caused some issues, however the course deserves a 5/5

Filtrar por:

por Ayman K

•19 de Jan de 2017

I've studied regression and other ML concepts in so many ways, but never have I been able to understand the concepts as I did after auditing this course. I learned the following the hard way: If you want to really get an intuitive, theoretical & practical understanding of ML, you have to listen to a statistician! If I were to realize this fact earlier, I would've never jumped into ML without a degree in statistics. I do highly recommend this course.

por Tsz W K

•25 de Abr de 2017

It's a truely amazing course. Having studied so much econometrics from undergraduate to PhD, I still learnt so much from this regression course. This course teaches me regressions in a way that is very different from any economics/business schools I have ever attended. While it is technically less demanding than most econometric courses from second year (UG) onwards, it is the applied/practical nature of this course that makes it so valuable.

por Daniel C

•15 de Mar de 2016

Amazing - way more depth than the first course, and much narrower focus. Emily teaches all courses here and dives into the math and usage. Programming hints are given but no more walkthroughs of the code. Assignments laid out such that you need to code the algorithms correctly in order to pass assignments. Emily has an excellent way of explaining the math/calculous/reasoning behind the algorithms and proofs thereof. Love it.

por Jaiyam S

•1 de Jan de 2016

This is one of the best online courses out there and not just about Machine Learning. The course was very well organized and the teaching staff was very helpful in resolving whatever issues cropped up. I would suggest you to provide additional readings/ references at the end of the course in 'Closing remarks'. Thank you Profs. Emily and Carlos for the wonderful course. Keep up the good work! I am looking forward to the next one.

por Juan C A

•9 de Jan de 2016

This is an excellent course! Emily Fox does an excellent job at explaining what could be a hard concept grasp. I am talking about convex optimization and the LASSO solution. I have taken graduate level classes in convex optimization and the math is high level and can be challenging. The animation Emily presents along with the geometric intuitive explanation drives the intuition home. Thank you Emily and Carlos for this class.

por Kevin K

•31 de Out de 2016

Applications and examples are well-chosen. The choice of theory is appropriate given the audience. The problem sets are a tad on the difficult side in that extreme care must be taken to get the right answers. Some of this has to do with how the assignments are structure. Instructions need to be read several times, which can be quite tedious. In the end, they help you learn the material and force you to implement carefully.

por Samuel d Z

•27 de Jun de 2017

Awesome. You need a little bit of experience but things are explained really well. So glad I took this course, I tried another one from another university, it was disastrous. It certainly helps when you know how to do programming as this takes a lot of time and can be frustrating if you are new at it. Still worth learning it this way. Would recommend to use the GraphLab and maybe later redo it with standard Python tools.

por Jatin K

•5 de Out de 2020

I have taken so many other courses for Machine Learnig already but the way this course settles down all those concepts so nicely with visualisations and examples and with hands on practice assignments and problems is remarkable.

I really wish I took this course way back as its a must take course for beginners but I am really happy after finally completing this course and making the foundations more stiff and strong

por Tanmay G

•21 de Fev de 2016

Fantastic course in regression, taught with the mathematical rigor necessary to really understand (not just use) the concepts. The instructors both do an amazing job introducing the concepts piece by piece in a logical and easy to follow manner. In addition, several modules have *optional* in depth derivations of key formulae for those who want to understand the mathematical underpinnings of the regression methods

por Nsair A

•3 de Mar de 2017

this course offers so much that by the time you are going through the lecture videos and the reading material, you do all the tasks along and you don't want the lecture to end. In fact by the time a lecture is finished, you want to do more and you click on the next one. the course gives a very good understanding of machine learning models and the skills gained can be used in a lot of different situations.

por Pawan K S

•13 de Fev de 2016

This course is very detailed and have lot of information about regression, should be taken by anyone who wants to become master in it. But each lesson should be given a week, otherwise it becomes over whelming. Assignments are good as well, though some of them should have better instruction.

There should have been a programming assignment on kernal regression as well, as it is one of the upcoming technique.

por Stephane F

•31 de Dez de 2015

Professor Fox is explaining the main algorithms (gradient / coordinate descent) in a clear and understandable way. Quite often, in blogs and reviews, Andrew Ng's course (at Stanford) is mentioned as the reference, to me it looks like these series of courses can match Ng's course on machine learning (using Octave). Being based on Python I would give the advantage to this course and recommend it.

por Olexandra Z

•5 de Fev de 2017

Really great explanations for complex and important principles as well as math approaches and tools. Being a mathematician, I thought that in this math aspect there would be nothing new for me, but still it was a great refreshment and very useful explanations to understand how those methods actually work for machine learning tasks. Great balance of theory and practical applications! Thank you!

por Gabor S

•17 de Jan de 2017

This a well thought out course. From the simple concepts it gradually takes you to the more complex ones. The quizzes and programming assignments help you to really understand the problems that were introduced in the videos. The video slides of every module can be downloaded as a pdf document which makes the material easily searchable. And last but not least Emily Fox is a great instructor.

por Leon W

•16 de Jun de 2016

I learned quite a lot during this which I can use in practice. Everything is well explained in the video's. If I had to call a down side then I would say that I had a hard time with the math. This is because I never did something matrices and linear algebra. For those people who miss this background info I would like to say: if you're dedicated then you should be able to survive this course!

por Stefan K

•29 de Dez de 2015

Very good course with detailed explanations, both great lecturers, lets you choose environment of your liking for the assignments(python and graphlab are preferred). The explanations are detailed and clear and assignments are very practical. One of the best courses and Specializations on the Coursera I have taken so far. If you contribute lot of time and effort, you will learn a lot.

por Asim I

•19 de Dez de 2015

Awesome. Pure awesome. Great presentation on the theory and all the assignments force you to code solutions from scratch, you're not dependent on Graphlab. Very detailed presentation of advanced topics not covered in other superficial introductions to regression. And practical advice from the instructors shows that they are imparting practical real-world advice on running regression.

por David H

•31 de Mai de 2016

Congrats to Carlos and Emily on producing a great course. As a humble software developer with no statistics background (and someone who hasn't used calculus since they left school nearly 30 years ago) I found this course to be very accessible, the concepts clearly explained, and the results of the course work have been rewarding. Thanks for kick-starting my little grey cells again.

por Philippe N

•17 de Abr de 2020

I found this course really well presented and structured. II am currently developing myself a course on models and data and I have found many good ways of teaching in the presented content. The course could be even better if mentors were more responsive on the forum, as it is the case for most Coursera courses. I would encourage Coursera to take extra care of this kind of issues.

por William C

•2 de Jan de 2021

I really enjoyed this course on regression. The teaching was second to none and the course material was excellent. The assignments were relatively challenging but the slides and videos did a great job of boiling down difficult ideas into intuitive steps; they really helped! I will recommend this course to friends and colleagues interested in learning about regression and ML

por Jens K

•28 de Mai de 2018

Great course that guides you to coding regression (linear, polynomial and ridge regression with gradient descend, lasso with coordinate descend, and linear-average kNN), as well as demonstrating key statistical concepts in the slides and while doing the exercises. This code deepens understanding of key regression algorithms through a hands-on, learning-by-coding approach.

por Carlos F A

•9 de Jun de 2016

I already knew how to do linear regression before taking this course; however, I had always struggled to understand how ridge and lasso regression worked and what their usefulness was; thanks to this course I was finally able to understand those concepts very well. The visual explanation of how the ridge and lasso regression work made this course well worth its time.

por Marcio R

•23 de Fev de 2016

This module is very rich in pratical assignments, as well as quizzes to force you to understand what you are doing. Everything is really well balanced, and all the materials are very complete. Is clear the passion from the tutors and teachers in this course. This really gives you the necessary will to proceed, and don't give up, even when things get pretty hard.

por Fahad S

•31 de Jan de 2018

I thoroughly enjoyed the course and learned important machine learning concepts through it. The case study approach truly helps in building intuition for the concepts and methods we learn. Emily Ross explains complex ideas in an easy to understand intuitive manners and the visualizations are great. Looking forward to complete the rest of the specialization.

por Matthew B

•4 de Jun de 2016

This is a great class! Highly recommended. Emily and Carlos are a great team. The videos are polished, the progression through the material is well organized and everything just fits together very well in this specialization. The assignments are challenging enough to be worth the effort. Great specialization... I look forward to completing every class.

- Como encontrar propósito e sentido na vida
- Compreendendo a pesquisa médica
- Japonês para iniciantes
- Introdução à computação em nuvem
- Fundamentos de Mindfulness
- Fundamentos de Finanças
- Aprendizagem Automática
- Aprendizagem automática usando o Sas Viya
- A ciência do bem-estar
- Rastreamento de Contato com a Covid-19
- IA para todos
- Mercados Financeiros
- Introdução à Psicologia
- Introdução à AWS
- Marketing internacional
- C++
- Análise Preditiva e Mineração de Dados
- Aprendendo a Aprender da UCSD
- Programação para todos da Universidade do Michigan
- Linguagem R da JHU
- Treinamento de CPI do Google CBRS

- Processamento da Linguagem Natural (PLN)
- IA para Medicina
- Bom com palavras: escrita e edição
- Modelagem de doenças infecciosas
- A pronúncia do inglês americano
- Automatização de teste de software
- Aprendizagem profunda
- Python para todosPython para todos
- Ciência de Dados
- Fundamentos de negóciosFundamentos dos Negócios
- Habilidades em Excel para negócios
- Ciência de Dados com Python
- Finanças para todos
- Habilidades de comunicação para engenheiros
- Treinamento de vendas
- Desenvolvimento e gestão de marca pessoal
- Análise de Dados de Negócios da Wharton
- Psicologia Positiva da Universidade da Pensilvânia
- Aprendizagem Automática da Universidade de Washington
- Design Gráfico da CalArts

- Certificados profissionais
- Certificados MasterTrack
- Suporte de TI do Google
- Ciência de dados da IBM
- Engenharia de Dados do Google Cloud
- IA aplicada da IBM
- Arquitetura do Google Cloud
- Analista de Cibersegurança da IBM
- Automação da TI do Google com Python
- Profissional de Mainframe do IBM z/OS
- Gestão aplicada de projetos da UCI
- Certificado em Design Instrucional
- Certificado em Engenharia e Gerenciamento de Construção
- Certificado de Big Data
- Certificado de Aprendizagem Automática em Análise de Dados
- Certificado em Gestão de Inovação e Empreendedorismo
- Certificado de Sustentabilidade e Desenvolvimento
- Certificado de Serviço Social
- Certificado de IA e Aprendizagem Automática
- Certificado de Análise e Visualização de Dados Espaciais

- Graduações em Ciência da Computação
- Graduações em Negócios
- Graduações em Saúde Pública
- Graduações em Ciência de Dados
- Bacharelados
- Bacharelado em Ciência da Computação
- Mestrado em Engenharia Elétrica
- Conclusão de bacharelado
- Mestrado em Gestão
- Mestrado em Ciência da Computação
- Mestrado em Saúde Pública
- Mestrado em Contabilidade
- Mestrado em Tecnologia da Computação e da Informação
- MBA On-line
- Mestrado em Ciência de Dados Aplicada
- MBA Global
- Mestrado em Inovação e Empreendedorismo
- Mestrado em Ciência de Dados
- Mestrado em Ciência da Computação
- Mestrado em saúde pública