Chevron Left
Voltar para Machine Learning: Clustering & Retrieval

Comentários e feedback de alunos de Machine Learning: Clustering & Retrieval da instituição Universidade de Washington

4.7
estrelas
2,307 classificações

Sobre o curso

Case Studies: Finding Similar Documents A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python....

Melhores avaliações

BK

24 de ago de 2016

excellent material! It would be nice, however, to mention some reading material, books or articles, for those interested in the details and the theories behind the concepts presented in the course.

JM

16 de jan de 2017

Excellent course, well thought out lectures and problem sets. The programming assignments offer an appropriate amount of guidance that allows the students to work through the material on their own.

Filtrar por:

251 — 275 de 381 Avaliações para o Machine Learning: Clustering & Retrieval

por Manikant R

21 de jun de 2020

por ANKUR S

14 de abr de 2020

por Hanna L

2 de set de 2019

por Mark h

8 de ago de 2017

por 邓松

4 de jan de 2017

por Jiancheng

26 de out de 2016

por Thuong D H

22 de set de 2016

por Karundeep Y

18 de set de 2016

por Prathibha A

6 de dez de 2021

por Siddharth V B

29 de nov de 2020

por Saurabh A

24 de set de 2020

por Pradeep N

21 de fev de 2017

por clark.bourne

8 de jan de 2017

por Salim T T

27 de abr de 2021

por VITTE

11 de nov de 2018

por Gautam R

8 de out de 2016

por miguel s

20 de set de 2020

por Neha K

19 de set de 2020

por PAWAN S

17 de set de 2020

por Subhadip P

4 de ago de 2020

por Alan B

3 de jul de 2020

por RISHABH T

12 de nov de 2017

por Iñigo C S

8 de ago de 2016

por Mr. J

22 de mai de 2020

por Zihan W

21 de ago de 2020