Chevron Left
Voltar para Aprendizagem Automática

Comentários e feedback de alunos de Aprendizagem Automática da instituição Universidade de Stanford

4.9
estrelas
126,344 classificações
30,956 avaliações

Sobre o curso

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. Many researchers also think it is the best way to make progress towards human-level AI. In this class, you will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. More importantly, you'll learn about not only the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, you'll learn about some of Silicon Valley's best practices in innovation as it pertains to machine learning and AI. This course provides a broad introduction to machine learning, datamining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you'll also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas....

Melhores avaliações

CS

Jul 16, 2019

The course will give you the incites to understand the data driven mathematical functions to write softwares that can behave or change its behavior, based on stimulus (data).\n\nAndrew Ng is excellent

RR

May 19, 2019

This is the best course I have ever taken. Andrew is a very good teacher and he makes even the most difficult things understandable.\n\nA big thank you for spending so many hours creating this course.

Filtrar por:

176 — 200 de {totalReviews} Avaliações para o Aprendizagem Automática

por Mohd F

Nov 08, 2018

There is a lot to say about you Andrew sir but in few words - "Thank you very much for teaching us the ML concepts in such a beautiful manner "

por Mehdi E F

Mar 19, 2019

Very instructive course.

Thank you.

It would have been great to get an OCR exercice at the end.

por Nils W

Mar 23, 2019

Great course, but the sound quality is quite bad.

por Sai V P

Aug 05, 2019

Better upgrade from matlab to Python

por Jerome P

Mar 30, 2018

Good introduction course, giving an overview of machine learning algorithms and some methodology. Off course a lot can be added, but it's a good start for people with little to no knowledge or experience in this field. A few points that could be improved: I would like to have better material support for each section. Marked-up slides are not a great support for reviewing the different sections afterwards.

It would not hurt to provide a little bit more theoretical background and justification when covering the different algorithms. Andrew Ng almost apologizes when going into mathematical equations, but this is fundamental to machine learning.

quiz assignments are rather easy. They could be a little more challenging

I would rather have the programming assignment using R or python than Matlab.

But still a decent course overall I think.

por Eric S

Jun 06, 2018

This course needs to be severely updated and fixed. It is mostly kept alive by the amazing community of mentors, in particular, Tom Mosher. Without Tom, I would have gotten extremely frustrated with the weird quirks that come about during assignments. One important piece of advice: if you can do assignments in an Octave environment such as GNU Octave 4.0.3, I'd strongly recommend it (Althought it tends to crash ofter, so save, save, save!!!).

por Mirko J R

Apr 02, 2019

Excellent lessons by Prof. Andrew Ng.

However very poor support. No answers from any mentor along lessons, you should resolve all doubts by yourself.

I had a problem with my ID verification, I was waiting for a long time without any responses.

Also, it's difficult to contact persons who could support you, I tried to contact someone but just found a Bot. Terrible support.

por Shitai Z

Nov 19, 2018

Too easy for people with background in machine learning. But would be a good introductory one if you have zero understanding in machine learning and want to change your career track.

por Vyacheslav G

Feb 23, 2019

Sadly it's just introduction. And i would recommend to make course for python instead of matlab/octave

por Samuel

Feb 19, 2018

The course is not for people with not mathematical backgrounds plus its using matlab.. these days R and Python are more used in the industry for ML. I found to this course via friends that said it's hard but very recommended.. i think there are easier courses online that can deliver the same concepts

.

por Anton

May 11, 2018

Material of this course could be presented much deeper. Mr. Ng tries to avoid mathematical explanations.

por Loftur e

Sep 17, 2018

Assignments are very messy.

por Ivan Č

Feb 24, 2016

Certificate is expensive!

por Hu L

Feb 14, 2018

Too easy and too slow

por Bayram K

Feb 17, 2017

I would rename this course as Programming Octave with Application to Machine Learning rather that Machine Learning. Once you start the course you will have to focus on Octave rather than on ML topics if you want to do programming exercises. There is no degree of freedom in programming. You are provided with a lot of weird Octave codes which you will have to complete instead of writing yourself from scratch. More than 50% of my time was spent in order to learn Octave and understand (guess!!!!) Octave codes.

So, if you really want to learn ML and try it in practice this course is not for you. However, you could just watch the videos whose level is not more that elementary introduction to ML.

por Ross K

Oct 10, 2015

The course is more an exercise in flexing Ivy vernacular than it is actually teaching. The learning curve is too steep to be useful to the majority of potential registrants. You're interested in this course either to (a) learn something about an exciting and ever changing field and/or (b) to have the Stanford logo on your LinkedIn profile. In both cases, move on. The curve is far too steep to be useful or to merit the countless additional hours of background learning the course should have done to bridge the gap.

por Larry C

Feb 24, 2016

There are too many mistakes and misleading statements made in the course material. There were a lot difficulties with submitting assignments in order to move forward in the course. I had to give up because I don't have time to be bogged down like this.

The students' comments and discussion would be useful if they can be accessed from within each lesson. I can't make heads or tails of what the discussions were referring to, when they are all clumped together at the course web site instead.

por Alex W

Dec 14, 2015

The exercises lead you to the edge of a cliff, then push you off. No guidance. Good luck if you don't already know linear algebra, matrix math, and matlab. I'll be looking elsewhere to learn about Machine Learning. Glad I didn't pay for this course!

por omri g

Nov 11, 2015

Been asked to re-take all assignments *after* paying for a certificate! I wil never pay for a Coursera course again, and I would not recommend my friends to do so

por Andy M

Sep 08, 2018

Huge amounts of assumed understanding make this course impenetrable.

por Subham B

Aug 30, 2019

This course is definitely not for beginners.

por Harry E

Oct 04, 2017

Before I go into why I liked this course so much, let me give a little context on my motivation to taking it. My background is a Bachelors in Math, and 9 years working in finance in a role involving very little computer science or statistics. I wanted a change of industries into the world of Data, for which a significant amount of learning and retraining were necessary; however before just enrolling on and committing to a masters degree, I wanted to answer some questions. Do I enjoy this? Am I able to learn it? Do I want to take this field a step further? Fortunately, the answer to all of my questions was positive.

I have to compare this to the ML module of JHU's Data Science specialisation, which I found rather frustrating as it was too brief to properly go into how the algorithms work. No discredit to the JHU team, I thought the overall course was great and served its purpose, but if you are like me and want to understand what's going on under the hood of these algorithms, this is a superb course. None of the maths is particularly hard, you will need to brush up on some linear algebra, and no prior Matlab is required. Some pretty tough concepts are built up from great simple motivating examples, for me the Neural Network / logic function was the best example of this, and I was extremely satisfied with how I grasped the material. There are enough real world applications thrown in to stay relevant (Data Science is a practical field after all), my favourite was seeing my predictions for number recognition appearing on the screen from the Neural Network I'd just trained appear on screen.

One critique I read of the course which I slightly sympathise with is that the programming assignments become a little like syntax exercises coding an equation into Octave, and thus lose their effectiveness in teaching you. I slightly agree with this and would love to have developed more parts of the algorithms myself, but with the limited time the course has, reading through the code of each of the exercises rather than just clicking through is a decent enough half way step. I would recommend everyone to do this, the point of the course is not just to pass the assignments, but to read around the material a little bit and follow exactly what's going on. That has to be left up to the student.

Overall, I feel like I'm equipped with what I need to get my hands dirty with some datasets to work on my own projects, and give Kaggle a crack. And that's pretty cool considering a few weeks ago I knew pretty much nothing about any of this. Onto the next step in my Data journey!

por Melinda N

Sep 04, 2015

Before starting this course, I had no previous knowledge of machine learning and I had never programmed in Octave and I have little/no programming skills. This is a 11-week course and so I was not sure if I would make it to the end (or even get through the first week) but I was keen to learn something new.

Positive Aspects: The course is extremely well structured, with short videos (and test questions to help us verify if we have understood the concepts), quizzes and assignments. Prof. Andrew Ng presents the concepts (some very difficult) in a clear and almost intuitive manner without going too much into detail with mathematical proofs, making the course accessible to anyone. The mentors were fantastic and provided prompt responses, links to tutorials and test cases, which all helped me get through the course.

Negative Aspects: Searching the Discussion Board for something specific was no easy task. I would have liked to have known the answers to some of the questions in the quizzes that I got wrong.

What I loved about this course: Learning how powerful vectorization is, it allows us to write several lines of code in one single line and can be much faster than using for-loops. I was wowed several times.

Prof. Andrew Ng is a great teacher. He is also extremely humble and very encouraging. During the course he often said, "It's ok if you don't understand this completely now. It also took me time to figure this out." This helped me a lot. He also said, "if you got through the assignments, you should consider yourself an expert!" and I laughed silly. By no means do I feel like an expert but now I have a basic understanding of the different types of learning algorithms, what they could be used for and more importantly this course has generated a spark in me to use this tool for things that I find interesting and for that I am very grateful. I don't think a teacher has ever thanked me for assisting a class. This is a first-time! So thank you Prof. Andrew Ng and everyone who worked to put this course together. Also, special thanks to Tom Mosher (mentor). My best MOOC so far!

por Michael B

Dec 19, 2016

I would definitely recommend this course! I was very impressed by the quality of the lectures. Professor Ng uses the medium very well. He's easy to follow and the content is solid.The assignments were also good. They provide a ton of scaffolding, so you rarely have to write a lot of code, but if you never used Matlab before (like me) and it's been awhile since you've taken linear algebra (also true for me), then "thinking in terms of vectorization" takes a bit of getting used to. I'm really happy that I've been exposed to it, though, and it's pretty impressive how much computation you can express in one or two lines of Matlab.I only had to use the forums once at the beginning to figure out why I couldn't submit assignments. (It turned out that my version of Octave was too new for what the assignments had been tested with.) Once I got that sorted out, I never had to go back there for help, which I thought was a good sign that the assignments were clear and had been through sufficient testing by the staff.It's certainly a bit of a time commitment. I would probably budget at least 5 hours per week. I took a lot of notes, so I paused/rewound the videos a bunch, so it took longer for me to "watch" the videos than the advertised time.Again, the assignments were often not that much code, and I think they started to take me less time as I progressed through the course as I got more familiar with Octave and the style of the assignments. They aren't there to trick you or separate the wheat from the chaff: they're really there to reinforce the concepts from lecture and have you write some code yourself so you have some chance of writing your own code for your own project machine learning project one day.If anything, the assignments provide much more help than I expected. That is, if this were an in-person course where I could go to office hours or whatever if I got stuck, I would expect the assignments to provide less scaffolding and to force you to struggle quite a bit on your own more. (Maybe I just have bad flashbacks to undergrad or something.)

por Malcolm N

Jan 11, 2016

My CS friend recommended me to take this course to learn more about how to use data in business, after he heard that I wanted to program an app for food. he warned me about the great deal of math involved (mainly linear algebra). me being a physics/engineering major I naturally got even more excited (it turned out that he was right, and it would also be a huge plus to know multivariate calculus, and I can see myself struggle with the concepts had I not studied both these topics to bits in school). incidentally, this was my first online coursera experience. I can tell you it will be life changing experience. No longer do I have to physically travel somewhere to listen to lectures or hand in assignments, nor download lecture notes off of the school server. This is a 24/7 always on always available service, with the best TA's to answer your questions if you get stuck on homework assignments and quizzes. Everything in the coding assignments tests your knowledge of the course lectures and is designed such that you can complete it in the shortest possible amount of time while reaping the maximum amount of benefit. It is "easy" sense does not require you to grind through mundane things like looking for your own training set data or writing code to plot and visualise the data, but it is "hard" in the sense that very often it takes an hour (or more) of studying the lectures and thinking to figure out how to solve the problem in the most efficient way as possible which often involves writing a single line of vectored matlab/octave code. It is more of an overview of the most important topics in machine learning, but will be a great springboard to go in depth into each aspect of it. Lastly, Andrew often offers wonderful insights into the day to day of machine learning professionals in his lecture videos, so I would advise watching every single minute of them to get the most out of the course instead of aiming to race over the finish line (which can be tempting at times when the deadline approaches)