Chevron Left
Voltar para Structuring Machine Learning Projects

Comentários e feedback de alunos de Structuring Machine Learning Projects da instituição deeplearning.ai

4.8
estrelas
40,792 classificações
4,511 avaliações

Sobre o curso

You will learn how to build a successful machine learning project. If you aspire to be a technical leader in AI, and know how to set direction for your team's work, this course will show you how. Much of this content has never been taught elsewhere, and is drawn from my experience building and shipping many deep learning products. This course also has two "flight simulators" that let you practice decision-making as a machine learning project leader. This provides "industry experience" that you might otherwise get only after years of ML work experience. After 2 weeks, you will: - Understand how to diagnose errors in a machine learning system, and - Be able to prioritize the most promising directions for reducing error - Understand complex ML settings, such as mismatched training/test sets, and comparing to and/or surpassing human-level performance - Know how to apply end-to-end learning, transfer learning, and multi-task learning I've seen teams waste months or years through not understanding the principles taught in this course. I hope this two week course will save you months of time. This is a standalone course, and you can take this so long as you have basic machine learning knowledge. This is the third course in the Deep Learning Specialization....

Melhores avaliações

JB

Jul 02, 2020

While the information from this course was awesome I would've liked some hand on projects to get the information running. Nonetheless, the two simulation task were the best (more would've been neat!).

AM

Nov 23, 2017

I learned so many things in this module. I learned that how to do error analysys and different kind of the learning techniques. Thanks Professor Andrew Ng to provide such a valuable and updated stuff.

Filtrar por:

201 — 225 de 4,479 Avaliações para o Structuring Machine Learning Projects

por Julio E H E

Jun 16, 2019

This course is very helpful to learn best-practices and problem-solving strategies that can help improve our deep learning algorithms. While I think the ultimate way of learning is through practice, here you can at least get a list of things to try in the future as you work on these algorithms.

por ANSHUMAN S

May 26, 2019

Although this was a bit hard for me to understand but still through the quizzes i got an insight so as to where will these advice be applicable and where i can use what i studied.

I am thankful to the teachers and a especial thanks to Coursera for giving me the opportunity to avail this course.

por Virgilio E

Dec 17, 2017

I think this part of the specialization is a great value key, and makes the difference with other courses, self learning books, etc. The contents of this individual course helps a lot into understand and improve knowledge studied in previous and next courses. I definitely recommend this course.

por Severus

May 06, 2020

This is the one that talks a lot about how to struture DL projects. And many methods have been taught in this course including focusing on the error control, transfer learning, multi-task learning. After learning these methods, tuning a DL project or starting a DL project will be a lot easier.

por Andrei N

Sep 21, 2019

The content, examples, assignments, and quizzes are thoroughly developed. All the courses of the specialization share the same notation and lead a student from basic concepts to complex ones helping to develop an intuition on each step. The best course on topic of Deep Learning one could find.

por Neil O

Dec 08, 2017

This is a unique course that provides invaluable perspective on how to direct a deep learning project. Its value is derived from understanding the performance metrics ( the data about the data) and acting in a data driven way. Anyone in charge of a deep learning project should take this class.

por Mahmoud S

Oct 23, 2019

It has the best practice tips and top secret advises for Machine learning.

It really simple and clear. I love it too much.

Especially, the exams, A lot of effort is done on it. And the instructors notice which best way to absorb this deep concepts in this course by flight simulation techniques

por Virendra K Y

Apr 05, 2020

Thank you so much team and NG sir. What a simple explanation of everything. Love you guys and god bless you and your team sir. Honestly, no word to say how simply NG sir explains all the concepts. Hard work team. Love from India. and do yoga to boost your immune and stay safe from Covid19.

por Charles B

Jul 21, 2018

Covers some interesting points, particularly around introducing external data to your training set that doesn't match the distribution of the dev/test sets. Andrew Ng offers practical advice for running projects using Deep Learning techniques and how they differ from traditional approaches.

por Tanay G

Feb 04, 2020

I was sceptical at first, it seemed that the course would just teach a lot of theory which won't be relevant. I am happy to say that I was wrong, the course gave me a better understanding of how to take various decisions for a particular machine learning problem. I liked this course a lot.

por Akash B

May 14, 2019

It teaches the decision making process whenever you're working on a real- world probelm. You should grasp all the ideas into your brain very well. I think this is very important as per in the field of deeplearning.

This course is very rare, and it provides best case scenarios to test with.

por Haoxuan Q

Jan 26, 2018

I love this course very much and I would strongly recommend this course to other DL colleague. It is truly that DL is a highly empirical process which needed to be more systematic. In this course, I have learned many methods to make DL more controllable and predictable. Nice Job! Thanks!

por Pedro f

Mar 23, 2019

In my experience with Machine learning, we usually spend more time checking the algorithm than checking the best distribution of our data. In this course, Professor Andrew teaches us the need and obligation to create a correct distribution of our data with examples from the real world.

por Mohd S A

Feb 28, 2018

Extremely helpful for a beginner so as to think like a machine learning problem solver. I think there should be more quiz added to this course with scenario like given in two quiz. I have never enjoyed any course so much by taking same quiz again and again to get better understanding.

por Hiep P

Dec 14, 2017

In the bloom of Deep Learning/Machine Learning industries, know how to build a project is more important and a priority to know what knowledges to build that project. Break the problems, take each step follow the guide and avoid common pitfalls in process, this course will satisfy you.

por Javier H E T

May 01, 2020

this is definitely the best course i had taken. it has just 2 weeks, but it was the hardest. i will definitely come back to see the teachings here explained to check up if i'm thinking correctly so i don't make much mistakes in taking a direction in projects.

definitely recommended!!!

por Elena P

Sep 01, 2017

The case study format for quizzes was highly effective in helping me uncovering gaps in my knowledge that I didn't know were there. I would have liked to see at least one more case study per week. One per week just wasn't enough.

Overall good course with a few minor video glitches.

por Carlos A B R

Jul 22, 2019

I found this course really interesting because it gives many details on what path to follow to achieve better results not only depending on the amount of data we have but also taking into account some small details that can make a difference when starting machine learning projects.

por Dharam G

Jul 02, 2018

A very well systematic approach explained, to structure ML projects.Can be grasped and implemented by anyone, let it be a beginner or some expert.Really liked the idea of case study in quiz. (Wait ! How about extending this idea into some coding exercise ? Would be some real fun !)

por Andrew M

Oct 11, 2017

There is no coding in this course, but you learn a lot of how to design a Deep Learning Study. I learned a lot about the distribution of Training/Dev/Test sets and how to diagnose problems when a neural network is not performing as well as anticipated or if it is performing well.

por Tyler K

Aug 28, 2017

Outstanding course. Many of the points made in this course mirror the hard earned knowledge I gained back when I worked on Dynamic Rank search engine focused neural networks.

This may end up being my favourite of the 5 courses but let's see if the last two have more math first. :)

por Alexios B

Aug 20, 2017

This part of the specialization is short but it includes a lot of valuable information. Many of the tips are quite basic engineering best practices which most engineers should find natural, but some are very specific to deep learning and these are particularly useful to newcomers.

por Brad M

Aug 22, 2019

This is truly some information you'll never get in a standard class setting; this is more similar to compiling years of ML experience into short packets of advice that will guide your decisions for years to come. Extremely helpful, and recommended for all deep learning engineers.

por WALEED E

Jan 17, 2019

This course is really what any PhD would need to conduct his research in more time saving and efficient manner. It would be great if coding was accompanied (even if only running and watching results) to touch all aspects of analysis and suggested improvements could be visualized.

por Kanishk S

Jun 27, 2020

To Andrew and team (mentors and organizers), I am glad I opted for this course! You guys give such great insight on approaching and solving a Deep Learning problem, I don't think I would have ever found a better introductory course on Neural Nets. Thank you so much, everyone!!!!