Chevron Left
Voltar para Structuring Machine Learning Projects

Comentários e feedback de alunos de Structuring Machine Learning Projects da instituição deeplearning.ai

4.8
stars
34,556 classificações
3,611 avaliações

Sobre o curso

You will learn how to build a successful machine learning project. If you aspire to be a technical leader in AI, and know how to set direction for your team's work, this course will show you how. Much of this content has never been taught elsewhere, and is drawn from my experience building and shipping many deep learning products. This course also has two "flight simulators" that let you practice decision-making as a machine learning project leader. This provides "industry experience" that you might otherwise get only after years of ML work experience. After 2 weeks, you will: - Understand how to diagnose errors in a machine learning system, and - Be able to prioritize the most promising directions for reducing error - Understand complex ML settings, such as mismatched training/test sets, and comparing to and/or surpassing human-level performance - Know how to apply end-to-end learning, transfer learning, and multi-task learning I've seen teams waste months or years through not understanding the principles taught in this course. I hope this two week course will save you months of time. This is a standalone course, and you can take this so long as you have basic machine learning knowledge. This is the third course in the Deep Learning Specialization....

Melhores avaliações

AM

Nov 23, 2017

I learned so many things in this module. I learned that how to do error analysys and different kind of the learning techniques. Thanks Professor Andrew Ng to provide such a valuable and updated stuff.

DC

Mar 08, 2018

Going beyond the technical details, this part of the course goes into the high level view on how to direct your efforts in a ML project. Really enjoyable and useful. Thanks for making this available!

Filtrar por:

3351 — 3375 de {totalReviews} Avaliações para o Structuring Machine Learning Projects

por Peter G

Dec 05, 2017

Many helpful insights and advice from an experienced person is always great, but I don't thing this can be qualified as a complete 'course'. As I now see it - Course 2 and 3 of this specialization could easily be merged into one without loosing much.

por Kanghoon Y

Sep 04, 2019

I got an intuitions from this lectures. But What I want to get from this lecture when I first saw the title, is the method how we can define the activation function at multi-task learning etc. In this video, I got only the overall flows.

por SHUBHAM G

Jun 22, 2018

The course must have had some coding exercises showing how wrong the error analysis doesn't work and also some exercises on transfer learning, multi-task learning in order to see in practice how these concepts work in real life.

por Mats B

Mar 30, 2019

This course did not really feel like a course, just videos and ambiguous quizzes. Some repetition and poor editing of the videos. I recommend to reformat this course to be more substantial and to include programming exercises.

por Marian L

Jun 02, 2018

Compare to other courses of the specialization, this has lower quality of video lectures, often repeats things from previous courses and I think it would be better to separate whole course as a separate week of a previous one.

por Gianfrancesco A

Oct 23, 2017

Very interesting course about guidelines about how to set up a project target oriented, not so trivial. Perhaps an improvement could be to add a chapter on the various DN architectures available for the various tasks.

por Lukas O

Dec 11, 2017

Would be much better if it included a programming assignment as a final project. I'd like to have a little less scaffolding during the decision-making process to see how well I can do on even more realistic problems.

por Gabriel S M

Oct 22, 2017

It is a good course because it highlights practical aspects of implementing ML. Some of the test questions were a bit ambiguous though.

I'd also like to have seen Transfer/Multi-task learning implementation exercises.

por Tinsae G A

Feb 12, 2018

This course is full of intuitions that are very difficult to remember at once. The quiz is very hard and mind teasing. For better confidence, I would like if you add one more case study.

In general the course is good

por Bjorn E

Sep 09, 2019

Interesting and practical information, but it felt stretched out in an attempt to create a two-week course. With some editing and less repeated information this could be one week that would fit in the prior course.

por RB

Jan 31, 2018

Good course to learn about structuring the projects and carrying out error analysis. I wish there were some assignment to work on in addition to the case study quizzes. Assignment really help us learn effectively

por Francisco S R

Oct 25, 2017

The course was just a bunch of tips and suggestions. Yes, they are useful, but given the empirical nature of machine learning I would expect those tips to be accompanied by practical applications and homework.

por Amit P

Aug 21, 2017

I expected more. The videos were a little long and repetitive. The content was important, though. Maybe the course materials could be squeezed into one week and combined with the previous deep learning course.

por Viswajith K N

Jun 24, 2018

THe course was challenging and had valuable inputs. But it would be even more wonderful if we got to work on some portion of the case studies as a capstone project at the very least. Else Its a 5 star course.

por daniele r

Jul 15, 2019

Good for the numerous hints about practical issues such as different distributions on train/dev/set. Very bad for the lack of hands-on assignments. Good practical advices but no occasion to see them working!

por John O

Dec 16, 2017

The quality of the course is not up to par with the other courses in the specialization. There is very little content and it is gone through too slowly. There are also more bugs and errors in the exercises.

por 臧雷

Sep 05, 2017

Most of the materials in this course is tedious and have already been taught in previous courses. But I suggest the Transfer Learning and Multi-task Learning part, as well as the end-to-end learning part.

por Wells J

Dec 16, 2017

The course was misleading on what homework there was (machine learning flight simulation?) There was no homework. and the lectures were pretty bland compared to other courses in this specialty.

por Karthik R

Mar 04, 2018

Transfer Learning and Multi-Task learning discussed in the course would greatly benefit from having programming assignments where people can play around with the data and learn confidently.

por Andrew W

Aug 05, 2019

Good information about how to structure projects and how to boost performance. Not very hands-on however. Fits in well with the Specialization though as a break before CNN's and sequences.

por Daniel C

Nov 19, 2017

Not as helpful... just a few suggestions and ideas... but there's no great application of the information learned here like a walk-through project or something with code, that's graded.

por Luiz C

Oct 22, 2017

less useful than previous courses.

Would appreciate to go much deeper in directions like CNN, RNN, RL and review Unsupervised Learning (which was too light, ... no mention about RBM)

por Andrew C

Oct 29, 2017

Interesting content, but lacking in real work. As with all of the deeplearning.ai courses thus far, the multiple choice questions are frequently ambiguous and poorly worded.

por Zsolt K

Sep 24, 2018

The information is really basic, most of it is self explanatory. This shouldn't be a course on its own, rather maybe a week/half weeks worth of material in another course.

por Sherif A

Nov 25, 2017

This course is too subjective. Andrew shares his experience in a structured way in the lecture. However, I feel that correct structuring decisions need to be brainstormed.