Informações sobre o curso

289,068 visualizações recentes

Resultados de carreira do aprendiz

38%

comecei uma nova carreira após concluir estes cursos

42%

consegui um benefício significativo de carreira com este curso

43%

recebi um aumento ou promoção
Certificados compartilháveis
Tenha o certificado após a conclusão
100% on-line
Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis
Redefinir os prazos de acordo com sua programação.
Nível avançado
Aprox. 32 horas para completar
Inglês
Legendas: Inglês, Coreano

Habilidades que você terá

ChatterbotTensorflowDeep LearningNatural Language Processing

Resultados de carreira do aprendiz

38%

comecei uma nova carreira após concluir estes cursos

42%

consegui um benefício significativo de carreira com este curso

43%

recebi um aumento ou promoção
Certificados compartilháveis
Tenha o certificado após a conclusão
100% on-line
Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis
Redefinir os prazos de acordo com sua programação.
Nível avançado
Aprox. 32 horas para completar
Inglês
Legendas: Inglês, Coreano

oferecido por

Logotipo de National Research University Higher School of Economics

National Research University Higher School of Economics

Programa - O que você aprenderá com este curso

Classificação do conteúdoThumbs Up88%(4,435 classificações)Info
Semana
1

Semana 1

5 horas para concluir

Intro and text classification

5 horas para concluir
12 vídeos (Total 115 mín.), 4 leituras, 3 testes
12 videos
About this course2min
Welcome video5min
Main approaches in NLP7min
Brief overview of the next weeks7min
[Optional] Linguistic knowledge in NLP10min
Text preprocessing14min
Feature extraction from text14min
Linear models for sentiment analysis10min
Hashing trick in spam filtering17min
Neural networks for words14min
Neural networks for characters8min
4 leituras
About the University10min
Prerequisites check-list2min
Hardware for the course5min
Getting started with practical assignments20min
2 exercícios práticos
Classical text mining10min
Simple neural networks for text10min
Semana
2

Semana 2

5 horas para concluir

Language modeling and sequence tagging

5 horas para concluir
8 vídeos (Total 84 mín.), 2 leituras, 3 testes
8 videos
Perplexity: is our model surprised with a real text?8min
Smoothing: what if we see new n-grams?7min
Hidden Markov Models13min
Viterbi algorithm: what are the most probable tags?11min
MEMMs, CRFs and other sequential models for Named Entity Recognition11min
Neural Language Models9min
Whether you need to predict a next word or a label - LSTM is here to help!11min
2 leituras
Perplexity computation10min
Probabilities of tag sequences in HMMs20min
2 exercícios práticos
Language modeling15min
Sequence tagging with probabilistic models20min
Semana
3

Semana 3

5 horas para concluir

Vector Space Models of Semantics

5 horas para concluir
8 vídeos (Total 83 mín.)
8 videos
Explicit and implicit matrix factorization13min
Word2vec and doc2vec (and how to evaluate them)10min
Word analogies without magic: king – man + woman != queen11min
Why words? From character to sentence embeddings11min
Topic modeling: a way to navigate through text collections7min
How to train PLSA?6min
The zoo of topic models13min
2 exercícios práticos
Word and sentence embeddings15min
Topic Models10min
Semana
4

Semana 4

5 horas para concluir

Sequence to sequence tasks

5 horas para concluir
9 vídeos (Total 98 mín.)
9 videos
Noisy channel: said in English, received in French6min
Word Alignment Models12min
Encoder-decoder architecture6min
Attention mechanism9min
How to deal with a vocabulary?12min
How to implement a conversational chat-bot?11min
Sequence to sequence learning: one-size fits all?10min
Get to the point! Summarization with pointer-generator networks12min
3 exercícios práticos
Introduction to machine translation10min
Encoder-decoder architectures20min
Summarization and simplification15min

Avaliações

Principais avaliações do PROCESSAMENTO DA LINGUAGEM NATURAL

Visualizar todas as avaliações

Sobre Programa de cursos integrados Aprendizagem de máquina avançada

This specialization gives an introduction to deep learning, reinforcement learning, natural language understanding, computer vision and Bayesian methods. Top Kaggle machine learning practitioners and CERN scientists will share their experience of solving real-world problems and help you to fill the gaps between theory and practice. Upon completion of 7 courses you will be able to apply modern machine learning methods in enterprise and understand the caveats of real-world data and settings....
Aprendizagem de máquina avançada

Perguntas Frequentes – FAQ

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.