Informações sobre o curso
3.0
1 classificações
100% online

100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.
Nível intermediário

Nível intermediário

Horas para completar

Aprox. 13 horas para completar

Sugerido: 9 hours/week...
Idiomas disponíveis

Inglês

Legendas: Inglês
100% online

100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.
Nível intermediário

Nível intermediário

Horas para completar

Aprox. 13 horas para completar

Sugerido: 9 hours/week...
Idiomas disponíveis

Inglês

Legendas: Inglês

Programa - O que você aprenderá com este curso

Semana
1
Horas para completar
10 horas para concluir

Project Planning and Staffing

In this module I share with you my experience in product planning, staffing and execution. You will perform a product tear down and build a bill of materials (BOM) for that product. ...
Reading
12 vídeos (total de (Total 112 mín.) min), 1 leitura, 2 testes
Video12 videos
Segment 1 - Learning Outcomes, Introduction to a Design Process12min
Segment 2 - Requirements, Scope, Schedule, Resources, Heap Chart15min
Segment 3 - Roles and Responsibilities6min
Segment 4 - Process: Architecture Definition, Design Planning13min
Segment 5 - Process: Architecture Definition, Design Planning 218min
Segment 6 - Process: Develop9min
Segment 7 - Process: Verification11min
Segment 8 - Process: Manufacture2min
Segment 9 - Process: Deploy10min
Segment 10 - Process: Validation6min
Segment 11 - Temperature5min
Reading1 leituras
Project Planning and Machine Learning Course Slides10min
Quiz1 exercício prático
Quiz 110min
Semana
2
Horas para completar
2 horas para concluir

Sensors and File Systems

In this module you will learn about sensors, and in this case, a temperature sensor. You will learn how to calibrate and then validate that a temperature sensor is producing accurate results. We will study how data is stored on hard drives and solid state drives. We will take a brief look at file systems used to store large data sets....
Reading
16 vídeos (total de (Total 103 mín.) min), 1 teste
Video16 videos
Segment 1 - Learning Outcomes, Introduction to Thermistors3min
Segment 2 - Terminology: Resolution, Precision, Accuracy, Tolerance6min
Segment 3 - Basic Sensor Circuit5min
Segment 4 - Accuracy Example2min
Segment 5 - Calculating Rtherm2min
Segment 6 - Validating Calibration5min
Segment 7 - Filtering Techniques11min
Segment 8 - Block, Object and Key-Value Storage Devices15min
Segment 9 - Filesystem Basics3min
Segment 10 - A File on a Hard Drive5min
Segment 11 - A File on a Solid State Drive8min
Segment 12 - File System: NFS4min
Segment 13 - How Big is "Big"?8min
Segment 14 - Traditional File System Bottlenecks3min
Segment 15 - Parallel Distributed File Systems: Hadoop, Lustre13min
Quiz1 exercício prático
Quiz 218min
Semana
3
Horas para completar
3 horas para concluir

Machine Learning

In this module we look at machine learning, what it is and how it works. We take a look at a couple supervised learning algorithms and 1 unsupervised learning algorithm. No coding is required of you. Instead I provide working source code to you so you can play around with these algorithms. I wrap up by providing some examples of how ML can be used in the IIoT space....
Reading
22 vídeos (total de (Total 132 mín.) min), 1 leitura, 1 teste
Video22 videos
Segment 1 - Learning Outcomes1min
Segment 2 - AI Backgrounder6min
Segment 3 - Machine Learning, What is it?6min
Segment 4 - Machine Learning Schools of Thought9min
Segment 5 - Get the Tools3min
Segment 6 - Categories of Machine Learning5min
Segment 7 - Supervised Learning, Linear Regression 17min
Segment 8 - Supervised Leraning, Linear Regression 29min
Segment 9 - Supervised Learning, Linear Regression 38min
Segment 10 - Supervised Learning, Linear Regression 49min
Segment 11 - Supervised Learning, Bayes Theorem4min
Segment 12 - Supervised Learning, Naive Bayes9min
Segment 13 - Supervised Learning, Support Vector Machines (SVM) Introduction55s
Segment 14 - Supervised Learning, SVMs12min
Segment 15 - Unsupervised Learning, K-Means11min
Segment 16 - Reinforcement Learning46s
Segment 17 - Supervised Learning, Deep Learning2min
Segment 18 - Rick Rashid, Natural Language Processing8min
Segment 19 - Deep Learning, Hearing Aid2min
Segment 20 - Machine Learning in IIoT4min
Segment 21 - Machine Learning Summary4min
Reading1 leituras
Source code examples and magazine articles10min
Quiz1 exercício prático
Quiz 322min
Semana
4
Horas para completar
3 horas para concluir

Big Data Analytics

In this module you will learn about big data and why we want to study it. You will learn about issues that can arise with a data set and the importance of properly preparing data prior to a ML exercise....
Reading
19 vídeos (total de (Total 119 mín.) min), 1 leitura, 1 teste
Video19 videos
Segment 1 - Learning Outcomes, Definition of Big Data3min
Segment 2 - Importance of Big Data, Characteristics of Big Data4min
Segment 3 - Size of Big Data4min
Segment 4 - Introduction to Predictive Analytics2min
Segment 5 - Role of Statistics and Data Mining3min
Segment 6 - Machine Learning, Generalization and Discrimination7min
Segment 7 - Frameworks, Testing and Validating5min
Segment 8 - Bias and Variance in your Data3min
Segment 9 - Out-of-sample Data and Learning Curves5min
Segment 10 - Cross Validation5min
Segment 11 - Model Complexity, Over- and Under-fitting3min
Segment 12 - Processing Your Data Prior to Machine Learning8min
Segment 13 - Good Data, Smart Data6min
Segment 14 - Visualizing Your Data1min
Segment 15 - Principal Component Analysis (PCA)2min
Segment 16 - Prognostic Health Management, Hadoop Machine Learning Library11min
Segment 17 - My Example: Predicting NFL Football Winners18min
Segment 18 - Tom Bradicich, Hewlett Packard's Viewpoint on Big Data20min
Reading1 leituras
Source code example10min
Quiz1 exercício prático
Quiz 426min

Instrutores

Avatar

David Sluiter

Professor Adjunct
Electrical, Computer, and Energy Engineering

Sobre Universidade do Colorado em Boulder

CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies....

Sobre o Programa de cursos integrados Developing Industrial Internet of Things

In this specialization, you will engage the vast array of technologies that can be used to build an industrial internet of things deployment. You'll encounter market sizes and opportunities, operating systems, networking concepts, many security topics, how to plan, staff and execute a project plan, sensors, file systems and how storage devices work, machine learning and big data analytics, an introduction to SystemC, techniques for debugging deeply embedded systems, promoting technical ideas within a company and learning from failures. In addition, students will learn several key business concepts important for engineers to understand, like CapEx (capital expenditure) for buying a piece of lab equipment and OpEx (operational expense) for rent, utilities and employee salaries....
Developing Industrial Internet of Things

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você se inscreve no curso, tem acesso a todos os cursos na Especialização e pode obter um certificado quando concluir o trabalho. Seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.