CC
28 de jul de 2016
This is the second course I have taken from Roger Peng and both were outstanding. I have a strong math background, but not much of a background in stats, but this course was very approachable for me.
Y
23 de set de 2017
Very good course! It provide me the foundation in learning how to plot and interpret data. This will definitely strengthen my "R programming" to generate publication type figure for my genomics data!
por Razib A K
•18 de dez de 2018
good
por Ganapathi N K
•30 de abr de 2018
Nice
por Jay B
•15 de ago de 2017
good
por Saurabh G
•13 de abr de 2017
nice
por Larry G
•7 de fev de 2017
Nice
por 刘治
•17 de jul de 2016
good
por Prakash M S G C
•24 de mai de 2016
Good
por 朱荣荣
•9 de mar de 2016
good
por 丁雪松
•15 de jun de 2020
💯
por Amit K R
•21 de nov de 2017
ok
por Meidani P
•3 de dez de 2021

por Ganesh P
•28 de nov de 2017
V
por Wei W
•11 de set de 2017
C
por Balinda S
•11 de dez de 2016
T
por Phillip K
•20 de mar de 2018
Good stuff just as I have come to expect from this University and the courses that are part of this Signature Track.
A great deal of the lectures and work on assignments/quizzes/projects was learning and using the various plotting systems in R. Certainly this is important, but to put it into perspective, I spent four hours creating six plots for the final project, when I was able to use Tableau Desktop to create all six plots in under five minutes.
So formally learning the data exploration techniques was good, but expect much of this course to be about learning the R plotting systems.
That said, there is a point in this course (and the first time for all the courses to this point) where the topic suddenly got very, very technical. When clustering techniques were introduced it felt as if you were turned on your head as the focus suddenly went from various ways of plotting data in R to being neck deep in the explanation of clustering techniques that require a great degree of Linear Algebra knowledge.
Don't panic though. While there are questions in the guided assignments that are difficult, you don't really need to recall all of your Linear Algebra courses from college to pass this course. After all, R "has a package for that."
por Ruggero B
•29 de fev de 2016
My congratulations to all those people who worked to create this course although I have to pick up something I've found a bit annoying:
1 there were two video where the audio were nearly unintelligible
2 I would link the link proposed by the video to be possible to be clicked
3 Some exposition imperfection (even if they make these video more "real and human")
4 Since quiz are not so difficult to be evaluated automatically I found it a bit annoying to notice them locked by notpurchsing, even if I understand there have to be something which would make the customer to purchase.
I've found the swirl experience great although a bit annoying sometimes but I've no clue on how to possibly improve it so.
Keep up with this great work!
Bye
por Jamison C
•4 de jul de 2018
You'll learn some cool things like Kmeans clustering and creating dendrograms, as well as dimensionreduction techniques. The assignments are very easy if you have basic familiarity with R's base plotting system and the "ggplot2" package. I will say I'm very happy with this course in the overviews of R's major plotting systems (though no "ggvis" package), as well as working with color palettes. However, I wish there was more handson or peergraded practice with Kmeans, heatmaps, dendrograms, and dimension reduction techniques like Singular Value Decomposition (SVD). If these are new to you (they were to me!), you'll certainly walk away from the course more knowledgeable.
por Miguel C
•15 de abr de 2020
Once again the teacher was really knowledgeable and engaging. The content was really helpful for my career. The part about clustering was challenging but still manageable. The pacing was good, not too slow (so not boring) but also not too fast (so still easy to understand). The case studies, especially the one about activity measured by smartphones, was one of the best parts of the course.
I didn't particularly enjoy some of the swirl practices. I found some of them to be very very similar (if not the same) as the examples in the lectures, so I only enjoyed the few where there was some new content.
Overall I really enjoyed the course and I would recommend it :)
por Julien N
•13 de jul de 2018
A good start for data analysis, this course covers the basics of plotting with the three most common packages (base R, lattice, and ggplot2).I liked the assignment which difficulty is nicely measured (it is not just applying the videos concept, you have to look around the web to find tools and documentation about what functions to use).On a less positive aspects: I am not sure this course was the best place to introduce kmean and PCA sections... a lot of content is outdated (wrong links, old R command parameters, ...), look likes a quick freshup update would not do harm given the number of people that keeps registering...
por Ricardo M
•20 de nov de 2017
It would be of the best interest to all that the content of the course be reviewed. Seeing references to data from 20122015 gives the idea that there's been no recent content review. Although not being the same as taking the full course at the university, this is still a paid training and a certain level of accuracy is expected.
Another note goes to the forums which should be cleansed or handled differently. It's not very helpful to check a forum to see that most of the threads are requiring reviews to the assignments, some from years back.
por Chuxing C
•3 de dez de 2015
I have taken the course earlier, so am somewhat familiar with the layout and the materials. Overall it is a very good course and covers a wide range of subject matters. Roger has done a very good job explaining the concepts. I certainly would recommend this course to all who's interested in the subject.
I realize that there's limitation on the time people suppose to spend each week, however, I would like to suggest adding homework, in addition to quizzes.
Several video clips have some audio issues, not sure if that's fixable.
por Joseph F
•3 de jan de 2021
I like the case study part which provides you an overview of the practical applications of the skills learned in this course. Learned to use the different types of plotting systems in R which got me to use my 'hacking' skills to experiment and I find it fun. The least I like about the course is the clustering part, mainly because the topic is too advanced for my current level. But I am interested to learn more about it in the future. The swirl lessons were also really helpful to strengthen my understanding of the concepts.
por Shreya S
•16 de abr de 2019
A great course to begin with Exploratory Data Analysis. It teaches you how to analyse data and generate visual reports. However, to actually become efficient at Data Visualization one needs to dig deep and make use of other resources apart from this course. Also K means clustering and other types are explained well in this course but it would have been useful if there were exercises to help implement it in some real problem. Overall this course leaves you confident and enthusiastic about Data Visualization.
por Janet K
•28 de jun de 2017
The pacing of this course was somewhat better than the ones that came before it. I felt that the depth of information covered and the questions asked in the projects and quizzes were a better match than previously. I still let myself take an extra two weeks to complete the final project because I was still learning and playing around with the plots and selection of data, but that was because I wanted to, not because I had to.
por Harshitha H
•22 de fev de 2016
The course did a good overview of the different plotting systems in R, but it rushed through clustering. I had to watch the videos of kmeans and hierarchical clustering at least 3 times to sort of understand it. The matrix concepts went completely over my head. Otherwise, the projects were very interesting, and I would highly recommend this course to other people.