Informações sobre o curso
2,304 visualizações recentes

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Aprox. 40 horas para completar

Sugerido: 6 hours/week...

Inglês

Legendas: Inglês

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Aprox. 40 horas para completar

Sugerido: 6 hours/week...

Inglês

Legendas: Inglês

Programa - O que você aprenderá com este curso

Semana
1
1 hora para concluir

Course Orientation

You will become familiar with the course, your classmates, and our learning environment. The orientation will also help you obtain the technical skills required for the course.

...
2 vídeos ((Total 9 mín.)), 4 leituras, 1 teste
4 leituras
Syllabus10min
About the Discussion Forums10min
Updating Your Profile10min
Social Media10min
1 exercício prático
Orientation Quiz10min
9 horas para concluir

Module 1: Introduction to Machine Learning

This module provides the basis for the rest of the course by introducing the basic concepts behind machine learning, and, specifically, how to perform machine learning by using Python and the scikit learn machine learning module. First, you will learn how machine learning and artificial intelligence are disrupting businesses. Next, you will learn about the basic types of machine learning and how to leverage these algorithms in a Python script. Third, you will learn how linear regression can be considered a machine learning problem with parameters that must be determined computationally by minimizing a cost function. Finally, you will learn about neighbor-based algorithms, including the k-nearest neighbor algorithm, which can be used for both classification and regression tasks.

...
4 vídeos ((Total 47 mín.)), 3 leituras, 2 testes
3 leituras
Module 1 Overview10min
Lesson 1-1 Readings10min
Lesson 1-2 Readings10min
1 exercício prático
Module 1 Graded Quiz20min
Semana
2
9 horas para concluir

Module 2: Fundamental Algorithms

This module introduces several of the most important machine learning algorithms: logistic regression, decision trees, and support vector machine. Of these three algorithms, the first, logistic regression, is a classification algorithm (despite its name). The other two, however, can be used for either classification or regression tasks. Thus, this module will dive deeper into the concept of machine classification, where algorithms learn from existing, labeled data to classify new, unseen data into specific categories; and, the concept of machine regression, where algorithms learn a model from data to make predictions for new, unseen data. While these algorithms all differ in their mathematical underpinnings, they are often used for classifying numerical, text, and image data or performing regression in a variety of domains. This module will also review different techniques for quantifying the performance of a classification and regression algorithms and how to deal with imbalanced training data.

...
5 vídeos ((Total 52 mín.)), 4 leituras, 2 testes
5 videos
Introduction to Decision Trees15min
Introduction to Support Vector Machine13min
4 leituras
Module 2 Overview10min
Lesson 2-1 Readings10min
Lesson 2-3 Readings10min
Lesson 2-4 Readings10min
1 exercício prático
Module 2 Graded Quiz20min
Semana
3
8 horas para concluir

Module 3: Practical Concepts in Machine Learning

This module introduces several important and practical concepts in machine learning. First, you will learn about the challenges inherent in applying data analytics (and machine learning in particular) to real world data sets. This also introduces several methodologies that you may encounter in the future that dictate how to approach, tackle, and deploy data analytic solutions. Next, you will learn about a powerful technique to combine the predictions from many weak learners to make a better prediction via a process known as ensemble learning. Specifically, this module will introduce two of the most popular ensemble learning techniques: bagging and boosting and demonstrate how to employ them in a Python data analytics script. Finally, the concept of a machine learning pipeline is introduced, which encapsulates the process of creating, deploying, and reusing machine learning models.

...
5 vídeos ((Total 40 mín.)), 3 leituras, 2 testes
5 videos
Introduction to Boosting9min
Introduction to ML Pipelines8min
3 leituras
Module 3 Overview10min
Lesson 3-1 Readings10min
Lesson 3-2 Readings10min
1 exercício prático
Module 3 Graded Quiz20min
Semana
4
9 horas para concluir

Module 4: Overfitting & Regularization

This module introduces the concept of regularization, problems it can cause in machine learning analyses, and techniques to overcome it. First, the basic concept of overfitting is presented along with ways to identify its occurrence. Next, the technique of cross-validation is introduced, which can mitigate the likelihood that overfitting can occur. Next, the use of cross-validation to identify the optimal parameters for a machine learning algorithm trained on a given data set is presented. Finally, the concept of regularization, where an additional penalty term is applied when determining the best machine learning model parameters, is introduced and demonstrated for different regression and classification algorithms.

...
5 vídeos ((Total 48 mín.)), 4 leituras, 2 testes
5 videos
Introduction to Model-Selection16min
Introduction to Regularization8min
4 leituras
Module 4 Overview10min
Lesson 4-1 Readings10min
Lesson 4-2 Readings10min
Lesson 4-3 Readings10min
1 exercício prático
Module 4 Graded Quiz20min

Instrutores

Avatar

Robert Brunner

Professor
Accountancy

Comece a trabalhar rumo ao seu mestrado

Este curso é parte da graduação 100% on-line Master of Science in Accountancy (iMSA) da Universidade de Illinois em Urbana-ChampaignUniversidade de Illinois em Urbana-Champaign. Caso seja aceito para o programa completo, seus cursos contarão para sua graduação.

Sobre Universidade de Illinois em Urbana-ChampaignUniversidade de Illinois em Urbana-Champaign

The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs. ...

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você adquire o Certificado, ganha acesso a todo o material do curso, incluindo avaliações com nota atribuída. Após concluir o curso, seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.