Voltar para Análise de dados com Python

estrelas

12,970 classificações

•

1,893 avaliações

Learn how to analyze data using Python. This course will take you from the basics of Python to exploring many different types of data. You will learn how to prepare data for analysis, perform simple statistical analysis, create meaningful data visualizations, predict future trends from data, and more!
Topics covered:
1) Importing Datasets
2) Cleaning the Data
3) Data frame manipulation
4) Summarizing the Data
5) Building machine learning Regression models
6) Building data pipelines
Data Analysis with Python will be delivered through lecture, lab, and assignments. It includes following parts:
Data Analysis libraries: will learn to use Pandas, Numpy and Scipy libraries to work with a sample dataset. We will introduce you to pandas, an open-source library, and we will use it to load, manipulate, analyze, and visualize cool datasets. Then we will introduce you to another open-source library, scikit-learn, and we will use some of its machine learning algorithms to build smart models and make cool predictions.
If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge.
LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate....

SC

5 de Mai de 2020

I started this course without any knowledge on Data Analysis with Python, and by the end of the course I was able to understand the basics of Data Analysis, usage of different libraries and functions.

RP

19 de Abr de 2019

perfect for beginner level. all the concepts with code and parameter wise have been explained excellently. overall best course in making anyone eager to learn from basics to handle advances with ease.

Filtrar por:

por Chioma J E

•9 de Abr de 2019

The course was not detailed enough. I think the instructor assumed that people taking the course would know a lot about Regression, Correlation and some other statistical functions, that it was hard to understand or follow at times. Maybe consider 'dumbing' down down the statistical functions so that newbies can also follow.

Overall interesting course. Thank you.

por Kam S H

•23 de Jan de 2021

First 2 weeks were fine for beginners, but after week 3 where all new different syntax and concepts like seaborn, visualization, Regression models etc etc were thrown in, it got way too advanced for beginners especially when there insufficient and effective practices available to hone the knowledge. Have to spent most of the time self-learning on other websites.

por Nikhil B

•25 de Fev de 2019

This is an excellent course for beginners in the data analysis and data science fields as it explains deep technical concepts in layman terms along with the Python code for the same. However, not a perfect course for someone wanting to go into conceptual depth or wanting to expand their knowledge of analysis in Python beyond use of standard packages.

por Fares A G

•18 de Mar de 2020

Needs to rely less on the cognitive class platform, just host the ipynb files externally as the labs are inaccessible alot of the time. Course only covers regression models, I would've liked to see SVM, KNN and other algorithms. However the course excels in explaining the relevant maths related to regression and regression evaluation

por Mbongeni N M

•9 de Set de 2018

It was educational, but when you pass a quiz, there should be an option to get answers to the questions you got wrong. And the practice exercises were filled with mistakes, particularly week 5. And the instructor was not responding to students' questions for week 5, which was one of the most challenging weeks. That was annoying.

por Yariv Z

•23 de Mai de 2020

A lot of un addresses subjects. Many mistakes both in the videos and in the labs.

Overall after viewing all the videos again and summarizing for my self everything, I felt a lot better with the material but I think the course is not organized. I also think that it should get into some mathematical subjects more thoroughly.

por Brisa A

•28 de Jun de 2019

A lot of errors make the course confusing. Also, the assigments and labs are "too easy"... it is clearly shown in the videos that there is much more to be done, but the course only demands you do about 50% of what is taught. How are we supposed to really learn without practice?? Give us real and demanding projects!

por Antonio P

•5 de Mar de 2019

The content was good, but there were numerous mistakes and inconsistencies (i.e. a chart would show a red line as a training set but the write-up would say the red line was a testing set). Also, I would have preferred to have shorter and more lab activities. The lab activities were too few and each was too long.

por Vyacheslav I

•15 de Nov de 2019

Grammatical mistakes, low quality videos, low quality slides and videos. Labs are okay, though no in-depth clarifications and explanations are given. Like "to do this you write this". Options? Explanations? What for? It's too much. Just remember how we wrote these lines and copy-paste them in you code later.

por Hemanth S

•4 de Mai de 2020

Course is a bit too short and way too fast paced for what it is trying to convey! Of course people will be able to complete the course without problems but, have to re-visit and brush knowledge on these a lot more. Anyways, it is a bit of confidence booster. You feel like you learnt a new course.

por Rakshita S

•26 de Jul de 2020

The reason I am giving a three to this course because compared to rest it was a bit fast-paced. Also, I feel we need a prerequisite of statistics before starting this course which was not mentioned anywhere.

Guess it is time for a lot of practice. Wish there were more assignments as well.

por Sisir K

•15 de Fev de 2019

Highly technical and complex in nature. Difficult for people just starting out with data science. The hands-on labs are more useful than the videos themselves. The quizzes in between videos felt a bit too easy and mostly comprised of examples (as questions) in the videos themselves.

por Raghav N

•14 de Set de 2018

This course is definitely very helpful to people who are passionate about Data science and have basic to intermediate understanding of Python but this course can be much better if it includes coding assignments rather than quiz submission. It was a great experience.

por Roberto B

•10 de Jul de 2019

I'm not convinced that this is a great way to learn, I just feel there needs to be a better way of learning this than the approach this course takes, I kind of learned the python commands but I'm not sure I understand how to apply them in the real world. We'll see

por Toan L T

•23 de Out de 2018

Decent videos on Data Analysis techniques.

But the labs are poorly constructed: typos, inconstant question and solution, un-commented code and under-explained lab result.

It's a shame since the labs in other courses in this series are very high-quality.

por Raj K

•6 de Jul de 2018

It would be great course for beginner to have idea about different steps involve in data science job. I would recommend to go with this course. I just took 3 days to complete this course and you can do in 2 days also. Depending on your speed.

por Damian D

•13 de Fev de 2019

There are some mistakes in the course (wrong transcryptions, missing cells in LAB).

The material is quite difficult and more explanation / exercises would be needed.

There is no assignment at the end of the course which I consider as minus.

por Filipe S M G

•24 de Ago de 2019

Good introductory course on Data Analysus with Python. Since the course is short, the functions and concepts are explained very quickly. There are also many mistakes in the slides, notebooks and even in the final assignment.

por Benoit P D

•4 de Mai de 2019

The content of the course is very interesting. There are lots of typos in the lab workbooks though. Additionally, i found having to use Watson Studio for the assignment / labs as opposed to plain Jupyter a little annoying.

por Sadanand U

•9 de Abr de 2019

It would be great if we go in a little more details of when to use which metrics for evaluation. Instead of running through a bunch of concepts you could have spent a little more time in each of them.

por Joseph M

•21 de Fev de 2019

There were serious problems with this course, not in the instructional material but in the execution. There were multiple typos in the code. The especially grievous ones being in the dictionary names.

por Michael L

•1 de Jan de 2021

Ran into some roadblocks during the peer assignment. It would have been nice to have had access to someone to discuss the roadblocks and assist me with understanding how I went wrong.

por Deren T

•7 de Jan de 2019

This is the 6th course of the specialization and I gave 5 stars to the previous courses. But this course have many typos in videos and codes. It makes harder to understand some points.

por Kristen P

•18 de Ago de 2019

The work in this course was incredibly interesting. However, there are many errors and the forums went for over a week without response to questions...It seems hastily put together.

por L V P K M

•14 de Mai de 2020

Videos are very fast and dont go into details. Assignment is very easy, it could have been more challenging which can test and make learner to think using several concepts learned.

- Como encontrar propósito e sentido na vida
- Compreendendo a pesquisa médica
- Japonês para iniciantes
- Introdução à computação em nuvem
- Fundamentos de Mindfulness
- Fundamentos de Finanças
- Aprendizagem Automática
- Aprendizagem automática usando o Sas Viya
- A ciência do bem-estar
- Rastreamento de Contato com a Covid-19
- IA para todos
- Mercados Financeiros
- Introdução à Psicologia
- Introdução à AWS
- Marketing internacional
- C++
- Análise Preditiva e Mineração de Dados
- Aprendendo a Aprender da UCSD
- Programação para todos da Universidade do Michigan
- Linguagem R da JHU
- Treinamento de CPI do Google CBRS

- Processamento da Linguagem Natural (PLN)
- IA para Medicina
- Bom com palavras: escrita e edição
- Modelagem de doenças infecciosas
- A pronúncia do inglês americano
- Automatização de teste de software
- Aprendizagem profunda
- Python para todosPython para todos
- Ciência de Dados
- Fundamentos de negóciosFundamentos dos Negócios
- Habilidades em Excel para negócios
- Ciência de Dados com Python
- Finanças para todos
- Habilidades de comunicação para engenheiros
- Treinamento de vendas
- Desenvolvimento e gestão de marca pessoal
- Análise de Dados de Negócios da Wharton
- Psicologia Positiva da Universidade da Pensilvânia
- Aprendizagem Automática da Universidade de Washington
- Design Gráfico da CalArts

- Certificados profissionais
- Certificados MasterTrack
- Suporte de TI do Google
- Ciência de dados da IBM
- Engenharia de Dados do Google Cloud
- IA aplicada da IBM
- Arquitetura do Google Cloud
- Analista de Cibersegurança da IBM
- Automação da TI do Google com Python
- Profissional de Mainframe do IBM z/OS
- Gestão aplicada de projetos da UCI
- Certificado em Design Instrucional
- Certificado em Engenharia e Gerenciamento de Construção
- Certificado de Big Data
- Certificado de Aprendizagem Automática em Análise de Dados
- Certificado em Gestão de Inovação e Empreendedorismo
- Certificado de Sustentabilidade e Desenvolvimento
- Certificado de Serviço Social
- Certificado de IA e Aprendizagem Automática
- Certificado de Análise e Visualização de Dados Espaciais

- Graduações em Ciência da Computação
- Graduações em Negócios
- Graduações em Saúde Pública
- Graduações em Ciência de Dados
- Bacharelados
- Bacharelado em Ciência da Computação
- Mestrado em Engenharia Elétrica
- Conclusão de bacharelado
- Mestrado em Gestão
- Mestrado em Ciência da Computação
- Mestrado em Saúde Pública
- Mestrado em Contabilidade
- Mestrado em Tecnologia da Computação e da Informação
- MBA On-line
- Mestrado em Ciência de Dados Aplicada
- MBA Global
- Mestrado em Inovação e Empreendedorismo
- Mestrado em Ciência de Dados
- Mestrado em Ciência da Computação
- Mestrado em saúde pública