Chevron Left
Voltar para Nearest Neighbor Collaborative Filtering

Comentários e feedback de alunos de Nearest Neighbor Collaborative Filtering da instituição Universidade de MinnesotaUniversidade de Minnesota

4.3
estrelas
298 classificações

Sobre o curso

In this course, you will learn the fundamental techniques for making personalized recommendations through nearest-neighbor techniques. First you will learn user-user collaborative filtering, an algorithm that identifies other people with similar tastes to a target user and combines their ratings to make recommendations for that user. You will explore and implement variations of the user-user algorithm, and will explore the benefits and drawbacks of the general approach. Then you will learn the widely-practiced item-item collaborative filtering algorithm, which identifies global product associations from user ratings, but uses these product associations to provide personalized recommendations based on a user's own product ratings....

Melhores avaliações

NS

11 de dez de 2019

i found this course very helpful and informative. it explains the theory while providing real-world examples on recommender systems. the assignment helps in clearing up any confusion with the material

SS

30 de mar de 2019

Thank you so very much to open my eye see more view of recommendation field not only algorithms but use case and many trouble-shooting in worldwide business, moreover interview with noble professor.

Filtrar por:

51 — 68 de 68 Avaliações para o Nearest Neighbor Collaborative Filtering

por Ankur S

16 de out de 2018

por Daniel P

8 de dez de 2017

por Dan T

23 de nov de 2017

por Jim T

1 de abr de 2019

por Dhananjay G

2 de fev de 2020

por Edgar M

25 de out de 2016

por Matheus H d C Z

17 de fev de 2020

por Dino A

24 de out de 2016

por Raffaele Z

3 de ago de 2022

por Alejo P

3 de dez de 2019

por Siddhartha S B

15 de mai de 2020

por H M

21 de jul de 2021

por Jean-Paul R

19 de jul de 2021

por Elias A H

28 de ago de 2017

por VenusW

27 de jan de 2021

por Yiwen X

23 de jul de 2020

por PRATIK K C

1 de jun de 2020

por Chunyang S

24 de fev de 2017