Informações sobre o curso
44,100 visualizações recentes

100% on-line

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível iniciante

Aprox. 25 horas para completar

Sugerido: 10 hours/week...

Inglês

Legendas: Inglês

O que você vai aprender

  • Check

    Understand the basics of SELECT statements

  • Check

    Understand how and why to filter results

  • Check

    Explore grouping and aggregation to answer analytic questions

  • Check

    Work with sorting and limiting results

Habilidades que você terá

Apache HiveApache ImpalaData AnalysisBig DataSQL

100% on-line

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível iniciante

Aprox. 25 horas para completar

Sugerido: 10 hours/week...

Inglês

Legendas: Inglês

Programa - O que você aprenderá com este curso

Semana
1
3 horas para concluir

Orientation to SQL on Big Data

9 vídeos (Total 47 mín.), 5 leituras, 2 testes
9 videos
Review and Preparation4min
Using the Hue Query Editors7min
Running SQL Utility Statements6min
Running SQL SELECT Statements5min
Understanding Different SQL Interfaces4min
Overview of Beeline and Impala Shell2min
Using Beeline8min
Using Impala Shell3min
5 leituras
Instructions for Downloading and Installing the Exercise Environment30min
Troubleshooting the VM5min
(Optional) What about Spark SQL?10min
Expectations for Learners10min
(Optional) Using Other SQL Engines10min
2 exercícios práticos
Week 1 Core Quiz30min
Week 1 Honors Quiz5min
Semana
2
3 horas para concluir

SQL SELECT Essentials

16 vídeos (Total 83 mín.), 4 leituras, 2 testes
16 videos
SQL SELECT Building Blocks2min
Introduction to the SELECT List7min
Expressions and Operators7min
Data Types6min
Column Aliases5min
Built-In Functions7min
Data Type Conversion5min
The DISTINCT Keyword5min
Introduction to the FROM Clause3min
Identifiers7min
Formatting SELECT Statements4min
Using Beeline in Non-Interactive Mode5min
Using Impala Shell in Non-Interactive Mode4min
Formatting the Output of Beeline and Impala Shell4min
Saving Hive and Impala Query Results to a File5min
4 leituras
Order of Operations5min
Division and Modulo Operators15min
Common String Functions15min
Case (In)Sensitivity in SQL10min
2 exercícios práticos
Week 2 Core Quiz30min
Week 2 Honors Quiz5min
Semana
3
3 horas para concluir

Filtering Data

14 vídeos (Total 85 mín.), 6 leituras, 2 testes
14 videos
About the Datasets4min
Introduction to the WHERE Clause2min
Using Expressions in the WHERE Clause9min
Comparison Operators9min
Data Types and Precision4min
Logical Operators7min
Other Relational Operators4min
Understanding Missing Values8min
Handling Missing Values6min
Conditional Functions9min
Using Variables with Beeline and Impala Shell7min
Calling Beeline and Impala Shell from Scripts6min
Querying Hive and Impala in Scripts and Applications2min
6 leituras
Data Reference5min
(Optional) Unicode Characters10min
Working with Literal Strings15min
Missing Values with Logical Operators10min
Missing Values in String Columns5min
(Optional Exercise) Change VM Desktop Color30min
2 exercícios práticos
Week 3 Core Quiz30min
Week 3 Honors Quiz5min
Semana
4
3 horas para concluir

Grouping and Aggregating Data

15 vídeos (Total 82 mín.), 6 leituras, 2 testes
15 videos
Introduction to Aggregation2min
Common Aggregate Functions2min
Using Aggregate Functions in the SELECT Statement8min
Introduction to the GROUP BY Clause6min
Choosing an Aggregate Function and Grouping Column4min
Grouping Expressions6min
Grouping and Aggregation, Together and Separately5min
NULL Values in Grouping and Aggregation4min
The COUNT Function7min
Tips for Applying Grouping and Aggregation7min
Filtering on Aggregates2min
The HAVING Clause8min
Understanding Hive and Impala Version Differences10min
Understanding Hue Version Differences2min
6 leituras
COUNT(*) and SUM(1)5min
Interpreting Aggregates: Populations and Samples10min
The least and greatest Functions5min
Why Aggregate Expressions Ignore NULL Values5min
(Optional) Shortcuts for Grouping10min
How Grouping and Aggregation Can Mislead10min
2 exercícios práticos
Week 4 Core Quiz30min
Week 4 Honors Quiz10min
4.9
10 avaliaçõesChevron Right

Principais avaliações do Analyzing Big Data with SQL

por RROct 26th 2019

Good course to understand the need of SQL in data analysis/big data using good examples and real life data and problem sets.

por TPOct 9th 2019

I have used many platforms to get started with SQL but this has been the best by far. Thank you Cloudera.

Instrutores

Avatar

Ian Cook

Senior Curriculum Developer
Cloudera

Sobre Cloudera

At Cloudera, we believe that data can make what is impossible today, possible tomorrow. We empower people to transform complex data into clear and actionable insights. Cloudera delivers an enterprise data cloud for any data, anywhere, from the Edge to AI. Powered by the relentless innovation of the open source community, Cloudera advances digital transformation for the world’s largest enterprises. ...

Sobre Programa de cursos integrados Modern Big Data Analysis with SQL

This Specialization teaches the essential skills for working with large-scale data using SQL. Maybe you are new to SQL and you want to learn the basics. Or maybe you already have some experience using SQL to query smaller-scale data with relational databases. Either way, if you are interested in gaining the skills necessary to query big data with modern distributed SQL engines, this Specialization is for you. Most courses that teach SQL focus on traditional relational databases, but today, more and more of the data that’s being generated is too big to be stored there, and it’s growing too quickly to be efficiently stored in commercial data warehouses. Instead, it’s increasingly stored in distributed clusters and cloud storage. These data stores are cost-efficient and infinitely scalable. To query these huge datasets in clusters and cloud storage, you need a newer breed of SQL engine: distributed query engines, like Hive, Impala, Presto, and Drill. These are open source SQL engines capable of querying enormous datasets. This Specialization focuses on Hive and Impala, the most widely deployed of these query engines. This Specialization is designed to provide excellent preparation for the Cloudera Certified Associate (CCA) Data Analyst certification exam. You can earn this certification credential by taking a hands-on practical exam using the same SQL engines that this Specialization teaches—Hive and Impala....
Modern Big Data Analysis with SQL

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você se inscreve no curso, tem acesso a todos os cursos na Especialização e pode obter um certificado quando concluir o trabalho. Seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

  • • Windows, macOS, or Linux operating system (iPads and Android tablets will not work) • 64-bit operating system (32-bit operating systems will not work) • 8 GB RAM or more • 25GB free disk space or more • Intel VT-x or AMD-V virtualization support enabled (on Mac computers with Intel processors, this is always enabled; on Windows and Linux computers, you might need to enable it in the BIOS) • For Windows XP computers only: You must have an unzip utility such as 7-Zip or WinZip installed (Windows XP’s built-in unzip utility will not work)

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.