Informações sobre o curso

89,390 visualizações recentes
Certificados compartilháveis
Tenha o certificado após a conclusão
100% on-line
Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis
Redefinir os prazos de acordo com sua programação.
Nível iniciante
Aprox. 11 horas para completar
Inglês
Legendas: Inglês

O que você vai aprender

  • Define and discuss big data opportunities and limitations.

  • Work with IBM Watson and analyze a personality through Natural Language Programming (NLP).

  • Examine how AI is used through case studies.

  • Examine and discuss the roles ethics play in AI and big data.

Certificados compartilháveis
Tenha o certificado após a conclusão
100% on-line
Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis
Redefinir os prazos de acordo com sua programação.
Nível iniciante
Aprox. 11 horas para completar
Inglês
Legendas: Inglês

oferecido por

Logotipo de Universidade da Califórnia, Davis

Universidade da Califórnia, Davis

Programa - O que você aprenderá com este curso

Semana
1

Semana 1

3 horas para concluir

Getting Started and Big Data Opportunities

3 horas para concluir
10 vídeos (Total 94 mín.), 3 leituras, 1 teste
10 videos
Course Introduction6min
Big Data Overview2min
What is "Big Data"?14min
Digital Footprint5min
Political Data-fusion and No-Sampling (Part 1)14min
Political Data-fusion and No-Sampling (Part 2)3min
Real-time11min
Machine Learning5min
Machine Learning Recommender Systems11min
3 leituras
About UCCSS10min
A Note From UC Davis10min
Optional/Complementary10min
1 exercício prático
Module 1 Quiz30min
Semana
2

Semana 2

3 horas para concluir

Big Data Limitations

3 horas para concluir
8 vídeos (Total 52 mín.), 1 leitura, 3 testes
8 videos
Big Data Limitations2min
Footprint ≠ Representativeness10min
Data ≠ Reality6min
Meaning ≠ Meaningful4min
Discrimination ≠ Personalization8min
Correlation ≠ Causation6min
Past ≠ Future10min
1 leituras
Welcome to Peer Review Assignments!10min
2 exercícios práticos
Natural Language Processing (NLP) Assignment Task5min
Module 2 Quiz30min
Semana
3

Semana 3

3 horas para concluir

Artificial Intelligence

3 horas para concluir
15 vídeos (Total 105 mín.), 1 leitura, 1 teste
15 videos
A Short History of AI9min
State of the Art5min
The Most Intelligent Gamer4min
Search and Robotics7min
Vision and Machine Learning6min
AI Challenges3min
Moral Frames7min
Predictions From Morals6min
Moral Brain Signatures6min
Computational fMRI11min
(A Personal) History of Dialogue Systems6min
The Art of Dialogue10min
Making Conversations10min
AI Telling Stories7min
1 leituras
Optional/Complementary10min
1 exercício prático
Module 3 Quiz30min
Semana
4

Semana 4

2 horas para concluir

Research Ethics

2 horas para concluir
13 vídeos (Total 105 mín.), 1 leitura, 1 teste
13 videos
Origins: Unethical Medical Research8min
Unethical Social Research10min
Taking Responsibility12min
The Common Rule8min
Ethical Computational Social Science10min
Concerns of an AI Pioneer5min
Walker on Ethics10min
Shelton on Ethics7min
Language Acquisition (Complementary)6min
Modeling Framework (Complementary)9min
Computational Model (Complementary)6min
Lessons Learned (Complementary)6min
1 leituras
Slaughterbots10min
1 exercício prático
Module 4 Quiz30min

Avaliações

Principais avaliações do BIG DATA, ARTIFICIAL INTELLIGENCE, AND ETHICS

Visualizar todas as avaliações

Sobre Programa de cursos integrados Computational Social Science

For more information please view the Computational Social Science Trailer Digital technology has not only revolutionized society, but also the way we can study it. Currently, this is taken advantage of by the most valuable companies in Silicon Valley, the most powerful governmental agencies, and the most influential social movements. What they have in common is that they use computational tools to understand, and ultimately influence human behavior and social dynamics. An increasing part of human interaction leaves a massive digital footprint behind. Studying it allows us to gain unprecedented insights into what society is and how it works, including its intricate social networks that had long been obscure. Computational power allows us to detect hidden patterns through analytical tools like machine learning and to natural language processing. Finally, computer simulations enable us to explore hypothetical situations that may not even exist in reality, but that we would like to exist: a better world. This specialization serves as a multidisciplinary, multi-perspective, and multi-method guide on how to better understand society and human behavior with modern research tools. This specialization gives you easy access to some of the exciting new possibilities of how to study society and human behavior. It is the first online specialization collectively taught by Professors from all 10 University of California campuses....
Computational Social Science

Perguntas Frequentes – FAQ

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
  • Quando você se inscreve no curso, tem acesso a todos os cursos na Especialização e pode obter um certificado quando concluir o trabalho. Seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

  • Se você se inscrever, terá 7 dias para testar sem custo e, durante este período, pode cancelar sem multa. Depois disso, não reembolsamos, mas você pode cancelar sua inscrição a qualquer momento. Veja nossa política para o reembolso total.

  • Sim, a Coursera oferece auxílio financeiro ao aluno que não possa pagar a taxa. Faça a solicitação clicando no link Auxílio Financeiro, abaixo do botão "Inscreva-se" à esquerda. Preencha uma solicitação e será notificado caso seja aprovado. Você terá que completar esta etapa para cada curso na Especialização, incluindo o Trabalho de Conclusão de Curso. Saiba mais .

  • These are some of the reflections shared by students who have worked through the content of the Specialization on Computational Social Science:

    • "Highly enjoyable and most importantly, giving me exceptionally important skills to fulfill my job requirements at a new position in Munich. You may be interested to know the impact of your course on salary and in my case, the knowledge and certification gained adds about another Euro 20.000 on the annual salary (taking it to about Euro 120.000 p.a.)."
    • "My overall impression of this was: I can't wait to use this for other stuff!!"
    • "Best course I have taken. I wish more online courses structured like this would be offered."
    • "The fact that these tools are so easily usable and attainable is incredible in my mind. Not only do we have access to them like we have access to things like Facebook and Twitter, but they're FREE."
    • "I absolutely think that these tools could be used in my future jobs, or even as a personal reflection. If you scrape and analyze the comments/reactions that your business gets on Youtube, Twitter, Instagram, etc., what does their language use say about how they interact with your brand — or what your brand brings out in them?"
    • "Wow, this is cool and fun stuff. Even though I may not pursue anything social-science related in the near future, it is still nice to learn and get to experience all of these tools that computational social science offers and benefits in all kinds of careers and fields of study."
    • "I particularly enjoyed the web-scraping for some reason. It feels very advanced although its very easy. ...It seems to be a very fast and efficient way of grabbing data."
    • "I enjoyed playing around with machine learning! ...It was also amazing to me how quickly it was able to grasp and learn our input in seconds. It makes me wonder how much more technology will advance in these next few years... It's scary but fascinating."
    • "The most interesting aspect was the fact that these tools are all free and online. In the past, only researchers at well-funded universities had access to programs like the ones we used in all of our labs. But now, even someone without much technical knowledge on complex software can use these tools."
    • "I am so surprised that these tools are available to anyone through a simple download, and even more so that they are very user friendly and easy to learn how to navigate. I plan on starting a clothing line company in the future and I think it will be really helpful for me to be able to analyze so much online data."
    • "As an Environmental Policy Analysis and Planning major, I was fascinated to learn that there is a feasible way to simulate policy implementation and impact multiple times within a short span of time."
    • "UCCSS has allowed me to feel more confident in my abilities with a computer and to better understand companies like Facebook or Twitter. ...these tools really are powerful but also dangerous. ...It allows powerful individuals to manipulate ideas."
    • "Throughout the course, the content was challenging, but when it was finally applied to the labs at the end of each module, it was really rewarding to see everything play out. It was even more rewarding when it made sense too! ... I'm really glad I took this course! It was definitely a challenge, but I'm glad I got to experience and learn about so many topics I never knew even existed."
    • "It was fun seeing the results of the code that I made, and I never thought that I would be doing something like this in my life. The results also showed me what the society would look like.... Social network analysis and web scraping could be the tools that I use in my future job as all the internship that I'm looking now all related to social media or digital media."
    • "My career aspiration is to be a digital marketing expert. These computational tools have enormous implications for the field."
    • "I really really loved that this class let me learn hands-on and gave me experience with tools that have real world application and combine STEM & social science. I think that a lot of these tools are useful far beyond homework activities."
    • "I did my MA in Social Work in India. I am trying to make a come-back in my field after a long career break. I had been hearing Big Data and Data Science everywhere and wondered if there is a link between these and Social Sciences. This specialization gave me needed answers and is helping me to gain very useful skills... Thank you so much for bringing this specialization. You are a very good instructor and made these courses are a smooth sail."
  • This Specialization on Computational Social Science is the result of a collective effort with contributions from Professors from all 10 campuses of the University of California. It is coordinated by Martin Hilbert, from UC Davis, and counts with lectures from:

    1) UC Berkeley: Joshua Blumenstock, Prof. iSchool; Stuart Russell, Professor of Computer Science and Engineering.

    2) UC Davis: Martin Hilbert, Prof., Dpt. of Communication & Seth Frey, Prof., Dpt. of Communication & Cynthia Gates, Director of the IRB.

    3) UC Irvine: Lisa Pearl, Prof. Cognitive Sciences.

    4) UC Los Angeles: PJ Lamberson, Assistant Prof. Communication Studies.

    5) UC Merced: Paul Smaldino, Prof. Cognitive and Information Sciences.

    6) UC Riverside: Christian Shelton, Prof. Computer Science.

    7) UC San Diego: James Fowler, Prof. Global Public Health and Political Science.

    8) UC San Francisco: Maria Glymour, Associate Prof. School of Medicine, Social Epidemiology & Biostatistics.

    9) UC Santa Barbara: René Weber, Prof. Dpt. of Communication & Media Neuroscience Lab (with Frederic Hopp).

    10) UC Santa Cruz: Marilyn Walker, Prof. Computer Science, Director, Computational Media.

  • Este curso não oferece créditos universitários, mas algumas universidades podem aceitar certificados de cursos que podem ser convertidos em créditos. Entre em contato com sua instituição para saber mais. Com os cursos on-line e os certificados Mastertrack™ do Coursera, é possível ganhar créditos universitários.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.