Chevron Left
Voltar para Apply Generative Adversarial Networks (GANs)

Comentários e feedback de alunos de Apply Generative Adversarial Networks (GANs) da instituição deeplearning.ai

4.8
estrelas
453 classificações

Sobre o curso

In this course, you will: - Explore the applications of GANs and examine them wrt data augmentation, privacy, and anonymity - Leverage the image-to-image translation framework and identify applications to modalities beyond images - Implement Pix2Pix, a paired image-to-image translation GAN, to adapt satellite images into map routes (and vice versa) - Compare paired image-to-image translation to unpaired image-to-image translation and identify how their key difference necessitates different GAN architectures - Implement CycleGAN, an unpaired image-to-image translation model, to adapt horses to zebras (and vice versa) with two GANs in one The DeepLearning.AI Generative Adversarial Networks (GANs) Specialization provides an exciting introduction to image generation with GANs, charting a path from foundational concepts to advanced techniques through an easy-to-understand approach. It also covers social implications, including bias in ML and the ways to detect it, privacy preservation, and more. Build a comprehensive knowledge base and gain hands-on experience in GANs. Train your own model using PyTorch, use it to create images, and evaluate a variety of advanced GANs. This Specialization provides an accessible pathway for all levels of learners looking to break into the GANs space or apply GANs to their own projects, even without prior familiarity with advanced math and machine learning research....

Melhores avaliações

UD

5 de dez de 2020

I really liked the exposure to preparing various loss functions in paired and non-paired GANs, introduction to other applications, and many great changes to improve the quality of the networks!

MM

23 de jan de 2021

GANs are awesome, solving many real-world problems. Especially unsupervised things are cool. Instructors are great and to the point regarding theoretical and practical aspects. Thankyou!

Filtrar por:

1 — 25 de 92 Avaliações para o Apply Generative Adversarial Networks (GANs)

por Akit M

15 de nov de 2020

por Dylan T

30 de nov de 2020

por Iván G

11 de nov de 2020

por Nikita K

4 de abr de 2021

por Behnaz B

31 de dez de 2020

por Quincy Q

1 de nov de 2020

por Mahdi E

10 de nov de 2020

por Ulugbek D

5 de dez de 2020

por Akhtar M

24 de jan de 2021

por Dmitry F

24 de nov de 2020

por Yifan J

18 de jan de 2021

por Aladdin P

21 de nov de 2020

por Kyle M P O

3 de jan de 2021

por Amit J

29 de jan de 2021

por Brian G

31 de jan de 2021

por Rajendra A

11 de ago de 2021

por Pablo C E

9 de abr de 2021

por Vinayak N

16 de nov de 2020

por Mikhail G

11 de nov de 2020

por Mark L

8 de dez de 2020

por Mark T

19 de jan de 2022

por Jong H S

16 de mar de 2022

por GERMÁN G J

28 de out de 2020

por Pang C H J

26 de set de 2021